Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of a regenerated carbon dioxide absorber for human life support systems during long space flights

https://doi.org/10.15518/isjaee.2019.16-18.37-50

Abstract

In the development of life support systems for long-term space missions, the most important tasks are the absorption of carbon dioxide from the air, the production of carbon dioxide with a concentration above 98 %, and the production of oxygen from carbon dioxide by the Bosch – Sabatier process. To solve these problems, a regenerative carbon dioxide absorber adapted to space flight conditions is required. The article proposes a new method for the production of chemosorbents based on hydrated zirconium oxide using polyacrylates as a binder and polymer matrix. The regenerated absorber of carbon dioxide for its application in space flights must meet the regulatory requirements of sanitary-chemical and toxicological safety of materials intended for the equipment of inhabited sealed rooms, be resistant to radiation and to the effects of mold. In the study of the processes of “sorption – desorption” of carbon dioxide, we have established the relationship between the technological parameters of the synthesis of chemosorbents and the kinetic parameters of the processes of mass-sorption of sorbate in the “sorption – regeneration” cycles. It is found that the optimal weight ratio of the “adsorbent – filler/polymer matrix” 89÷94/11÷6 is optimal in terms of the performance characteristics of the developed absorbers. It is shown experimentally that the main operational characteristics of the developed materials do not change under experimental conditions during 2000 “sorption – regeneration” cycles. The resulting chemosorbents are investigated by physicochemical analysis. Employing methods of gas chromatography and chromatomass spectrometry, we have conducted sanitary and chemical studies and toxicological assessment of the quantitative and qualitative composition of the components of gas release of the developed regenerated carbon dioxide absorber and air-gas mixture formed during the regeneration of the regenerated carbon dioxide absorber. Also we have carried out microbiological tests of samples of the regenerated absorber of carbon dioxide for resistance of material to influence of mold mushrooms. The results obtained confirm the possibility of using the developed materials in life support systems of manned spacecraft for deep space exploration.

About the Authors

N. V. Posternak
Corporation “Roshimzaschita” Ltd.
Russian Federation

Head of Laboratory no. 1 of the Departament of Chemistry and New Chemical Technologies,

19 Morshanskoe Drive, Tambov, 392680



Yu. A. Ferapontov
Corporation “Roshimzaschita” Ltd.
Russian Federation

Ph.D. in Engineering, Head of Laboratory no. 1 of Department of Chemistry and New Chemical Technologies,

19 Morshanskoe Drive, Tambov, 392680



S. N. Erokhin
Corporation “Roshimzaschita” Ltd.
Russian Federation

Head of the Sector of the Laboratory no. 1 OHiNHT,

19 Morshanskoe Drive, Tambov, 392680



V. V. Donskikh
Corporation “Roshimzaschita” Ltd.
Russian Federation

Researcher of the Laboratory no. 1 OHiNHT,

19 Morshanskoe Drive, Tambov, 392680



M. B. Alehina
FSBEI of HE “DI Russian University of Chemical Technology Mendeleev”
Russian Federation

D.Sc. in Chemistry, Professor,

9/2 Miusskaya Sq., , Moscow, 125047



L. N. Muhamedieva
SSC RF – “Institute of Biomedical Problems of the Russian Academy of Sciences”
Russian Federation

D.Sc. in Medicine, Head of Laboratory 0-121 “SanitaryChemical Safety and Toxicology of Hermetically Sealed Compartment’s Air”,

76A Khoroshevskoe Drive., Moscow, 123007



A. A. Pakhomova
SSC RF – “Institute of Biomedical Problems of the Russian Academy of Sciences”
Russian Federation

Senior Researcher at Laboratory 0-121 “Sanitary-Chemical Safety and Toxicology of Hermetically Sealed Compartment’s Air”,

76A Khoroshevskoe Drive., Moscow, 123007



D. S. Tsarkov
SSC RF – “Institute of Biomedical Problems of the Russian Academy of Sciences”
Russian Federation

Senior Researcher at Laboratory 0- 121 “Sanitary-Chemical Safety and Toxicology of Hermetically Sealed Compartment’s Air”,

76A Khoroshevskoe Drive., Moscow, 123007



References

1. S.P. Korolev rocket and space Corporation Energia in the first decade of the XXI century (Raketnokosmicheskaia korporatciia “E`nergiia” imeni S.P. Koroleva v pervom desiatiletii KHKH1 veka). Moscow: RKK “E`nergiia” Publ., 2011, 832 p. (in Russ.).

2. Ivanov D.I., Khromushkin A.I. Human life support systems for high-altitude and space flights (Sistemy` zhizneobespecheniia cheloveka pri vy`sotny`kh i kosmicheskikh poletakh). Moscow: Mashinostroenie Publ., 1968, p. 61. (in Russ.).

3. Voronin G.I., Polivoda A.I. life Support of spacecraft crews (Zhizneobespechenie e`kipazhei` kosmicheskikh korablei`). Moscow: Mashinostroenie Publ., 1967, 236 p. (in Russ.).

4. Presti J., Wallman H., Petroctlli A. Superoxide life support system for submersibles. Undersea Technol., 1967;8:20. [5] Petroctlli A., Capolesto A. Some notes on the use of superoxides in regenerative air system. Aerospace Med., 1964;31;442. A.E.

5. Avrushchenko A.E., Novikov A.F., Frenkel` V.I. Systems of electrochemical air regeneration of nuclear submarines (Sistemy` e`lektrohimicheskoi` regeneratcii vozduha atomny`kh podvodny`kh lodok). Moscow: Izdatel`stvo “Russkaia istoriia”, 2002, 431 p. (in Russ.).

6. Patent 2316391 RF, MPK D01J 20/06. Shubina V.N., Putin S.B. et al. A method of obtaining a regenerated absorber of carbon dioxide (Sposob polucheniia regeneriruemogo poglotitelia dioksida ugleroda) / 2008, 7 p. (in Russ.).

7. Grankina Iu.A., Shubina V.N. et al. Synthesis of a regenerated absorber of carbon dioxide on the basis of hydrated zirconium oxide for the concentration and removal of CO2 in manned confined objects (Sintez regeneriruemogo poglotitelia dioksida ugleroda na osnove gidratirovannogo oksida tcirkoniia dlia koncentrirovaniia i udaleniia SO2 v obitaemy`kh zamknuty`kh ob``ektakh) / ZHPKH, 2016;89(1):44–49 (in Russ.).

8. Posternak N.V., Putin S.B., Simanenkov S.I., Gatapova N.Tc. Methods of concentration of carbon dioxide in the air regeneration system in the conditions of long manned space flights (Metody` koncentrirovaniia dioksida ugleroda v sisteme regeneratcii vozduha v usloviiakh dlitel`ny`kh pilotiruemy`kh kosmicheskikh poletov). Vestneyk TGTU, 2012;18(1):173–181 (in Russ.).

9. Yang R.T. Adsorbents: fundamentals and applications. N.Y.: 2003. Wiley – Interscience, 410 p.

10. Aristov Yu. I. Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties. J. Chem. Eng. Jpn., 2007;40(13):1241–1251.

11. Patent 6451095 US. MPK V01D 53/06. Keefer B.G., Doman D.G., McLean R. Modular pressure swing adsorption apparatus / 2002.

12. Patent 1323468 ERV. MPK B01J 20/18. Fritz H., Hoefer H., Hammer J. Adsorbing material comprised of porous functional solid incorporated in a polymer matrix / 2001.

13. Patent 2939330 Fr. Serge N., Alice M., Patrick A. MPK V01J 20/18. Adsorbant zeolitique a liant organique / 2008.

14. Patent 1323468 ERV. MPK B01J 20/18. Fritz H., Hoefer H., Hammer J. Adsorbing material comprised of porous functional solid incorporated in a polymer matrix / 2001.

15. Patent 2939330 Fr. MPK V01J 20/18. Serge N., Alice M., Patrick A. Adsorbant zeolitique a liant organique / 2008.

16. Patent 7655300 US. MPK V32B5/16. Metz H., Devaux A., Suarez S., Kunzmann A. Transparent zeolite – polymer hybrid material with tunable properties / 2010.

17. Patent 2390378 RF. IPC B01J 20/32. Dzhannaneonio R., Veskovi K., Kattaneo L., Longoni D. Absorbing systems containing an active phase embedded in a porous material distributed in a medium with low permeability (Pogloshchaiushchie sistemy`, soderzhashchie aktivnuiu fazu, vnedrennuiu v poristy`i` material, raspredelenny`i` v sredstve s nizkoi` pronitcaemost`iu) / 2010.

18. Ferapontova L.L., Glady`shev N.F., Putin S.B. Adsorbent based on zeolite using ethylene fluoride derivatives as a binder (Adsorbent na osnove tceolita s ispol`zovaniem v kachestve sviazuiushchego polimerov ftorproizvodny`kh e`tilena). Himicheskaia tekhnologiia, 2011;12(4):215–222.

19. Ferapontova L.L., Glady`shev N.F., Putin S.B. Choice of optimal conditions for the preparation of composite sorption-active materials based on zeolite and ethylene fluoride (Vy`bor optimal`ny`kh uslovii` polucheniia kompozitcionny`kh sorbtcionno-aktivny`kh materialov na osnove tceolita i ftorproizvodny`kh e`tilena). Himicheskaia tekhnologiia, 2012;13(1):11–17.

20. Ferapontova L.L., Ferapontov Yu.A., Putin S.B., Rodaev V.V., Golovin Yu.I. Study of physical-chemical properties of composite sorption-active materials based on zeolite, and polymers of ethylene porpoising (Izuchenie fiziko-himicheskikh svoi`stv kompozitcionny`kh sorbtcionno-aktivny`kh materialov na osnove tceolita i polimerov ftorproizvodny`kh e`tilena). Zhurnal pricladnoi` himii, 2012;85(3):470–476.

21. Patent 2446876 RF no. 2010136355/05. Gladyshev N.F., Gladysheva T.V., Ferapontov Yu.A., Ferapontova L.L. Method for producing molded sorbent (Sposob polucheniia formovannogo sorbenta); application 30.08.2010, publ. 10.04.2012, bul. no. 10, 14 p.

22. Patent 2481154 RF no. 2011139686/05. Gladyshev N.F., Gladysheva T.V., Ferapontov Yu.A., Ferapontova L.L. Method for producing flexible composite sorption-active materials (Sposob polucheniia gibkikh kompozitcionny`kh sorbtcionno-aktivny`kh materialov); application 29.09.2011; publ. 10.05.2013, bul. no. 13, 14 p.

23. Patent 2543167 RF no . 2013102823/05. Ferapontova L.L., Gladyshev N.F., Gladysheva T.V, et al. Method for producing flexible composite sorption-active materials (Sposob polucheniia gibkikh kompozitcionny`kh sorbtcionno-aktivny`kh materialov); application 22.01.2013, publ. 27.07.2014, bul. no. 21, 14 p.

24. Posternak N.V., Ferapontov Yu.A., Ferapontova L.L., Akulinin E.I. Composite sorption-active materials based on zeolite and ethylene fluorine derivatives part I. Raw materials, production technology and research methodology for prototypes. Advanced Materials and Technologies, 2017;4:29–40.

25. Posternak N.V., Ferapontov Yu.A., Ferapontova L.L., Akulinin E.I. Composite sorption-active materials based on zeolite and ethylene fluorine derivatives part ii. Preparation of composite sorption-active materials, investigation of their physicochemical properties and selection of optimal synthesis conditions. Advanced Materials and Technologies, 2018;1:58–68.

26. Patent 2656490 RF no. 2017121491/05. Yarkina L.A., Bulaev N.A., Ferapontov Yu.A., Posternak N.V. A method of obtaining a regenerated absorber of carbon dioxide (Sposob polucheniia regeneriruemogo poglotitelia dioksida ugleroda); application 19.06.2017, opubl. 05.06.2018, bul. no. 16, 14 p.

27. Physico-chemical bases of synthesis and polymer processing (Fiziko-himicheskie osnovy` sinteza i pererabotki polimerov: Mezhvuzovskii` sbornik) / Ed. prof. Yu.D. Semchikov. – Gor`kii`, GGU, 1980, 128 p.

28. GOST R 50804-95 Habitat of an asronaut in a manned spacecraft (Sreda obitaniya kosmonavta v pilotiruemom kosmicheskom apparate). State Standart of Russia Moscow: IPK Publishing house of standards Publ., 1995.

29. GOST R ISO 14624-3-2010 Space systems. Safety and compatibility of materials. Part 3.Dermination of waste gases from materials and assembled products (Kosmicheskie sistemy. Bezopasnost´ i sovmestimost´ materialov. Chast´ 3. Opredelenie othodyashcih gazov iz materialov i sobrannyh izdelii). Moscow: Standartinform Publ., 2011.

30. GOST 9293-74 Nitrogen gas and liquid. Technical conditions (Azotgazoobrsznyi i zhidkii. Tekhnicheskie usloviya). Standards publishing house 1974, Moscow: Standartinform Publ., 2007.

31. GOST R ISO 16000 Indoor air. Part 6.Determonation of volatile organic compounds in the air of closed premises and the test chamber by activesampling on the sorbent Tepah TA wit subsequent thermal desorpyion and gas chromatographic analysis using MSD/FID (Vozduh zamknutyh pomeshchenii. Chast´ 6. Opredelenie letuchih organicheskih soedinenii v vozduhe zamknutyh pomeshshenii i ispytatel´noi kamery putem aktivnogo otbora prob na sorbent Tepah TA s posleduyushchei termicheskoi desorbciei i gazohromatograficheskim analizom s ispol´zovaniem MSD/PID).

32. GOST 9.049-91 Polymer materials and their components. Methods of laboratory tests for resistance to molds (Materialy polimernye i ih komponenty. Metody laboratornyh ispytanii na stoikost´ k vozdeistviyu plesnevyh gribkov) Accepting authority: State standart USSR, 1976.


Review

For citations:


Posternak N.V., Ferapontov Yu.A., Erokhin S.N., Donskikh V.V., Alehina M.B., Muhamedieva L.N., Pakhomova A.A., Tsarkov D.S. Development of a regenerated carbon dioxide absorber for human life support systems during long space flights. Alternative Energy and Ecology (ISJAEE). 2019;(16-18):37-50. (In Russ.) https://doi.org/10.15518/isjaee.2019.16-18.37-50

Views: 779


ISSN 1608-8298 (Print)