Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Mathematical Model of Hydrogen Permeability of Metals with Impurities Traps in the Presence of Internal Stresses of Various Physical Nature

https://doi.org/10.15518/isjaee.2019.19-21.029-044

Abstract

The interaction of hydrogen with metals is the main process of at least two areas of scientific research. One of the research directions is hydrogen energy. The second one is the development of effective coatings with the aim of keeping hydrogen atoms in the near-surface layer of structural elements for various purposes. The paper shows the process of creating a physical and mathematical model of the hydrogen permeability of electrochemical alloys synthesized by electrolysis depending on the level, sign, and nature of the distribution of internal stresses. We have analyzed the causes, nature and levels of internal stresses of various physical nature. Diffusion flows are shown through the external surface of a hollow cylinder depending on the sign of internal stresses. The diffusion of hydrogen atoms through a cylindrical shell with impurity traps is described by a non-stationary equation under the corresponding initial and boundary conditions. The choice of such a model system is due to the fact that cylindrical shells are the most common structural elements, and the complication of the mathematical model would not lead to a change in the qualitative picture of the concentration field of hydrogen atoms. For the fields of hydrogen atom concentration, we have used the corresponding analytical dependences which are the basis for mathematical modeling of diffusion processes and demonstrate the ability to control the hydrogen permeability of metals. The hydrogen permeability of a hollow cylinder primarily is shown to depend on the level and nature of the distribution of internal stresses (tensile and compressive). Internal stresses with a logarithmic dependence on coordinates have a single mathematical description, and using the superposition principle allows you to display a picture of the joint interactions of internal stress fields of various origins. When describing diffusion fluxes, two approaches are used. In the first approach, taking into account internal stresses that change the diffusion equation reduces to the introduction of some dimensionless parameters that are easily calculated, while using the principle of superposition, their algebraic summation is allowed. This allows parametrically controlling the internal stresses of different physical nature. The second one allows us to describe a mathematical model of the diffusion process of hydrogen atoms in a medium with the formation and decomposition of fixed metal − impurity − hydrogen complexes, taking into account the probability of their formation and disintegration.

About the Author

A. V. Zvyagintseva
Voronezh State Technical University
Russian Federation
Ph.D. in Engineering, Associate Professor at Department of Chemistry of the Faculty of Radio Engineering and Electronics


References

1. Johnson W.D. On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids. Proc. R. Soc. London, 1875;23:168–179.

2. Galaktionova N.A. Hydrogen in metals (Vodorod v metallah). Moscow: Metallurgiya Publ., 1967; 303 p. (in Russ.).

3. Gel'd P.V., Ryabov R.A. Mohracheva L.P. Hydrogen and physical properties of metals and alloys (Vodorod i fizicheskie svoistva metallov i splavov. Gidridy perekhodnyh metallov). Moscow: Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1985; 232 p. (in Russ.).

4. Novikov I.I. Defects in the crystal structure of metals (Defekty kristallicheskogo stroeniya metallov). Moscow: Metalluriya Publ., 1975; 208 p. (in Russ.).

5. Evstigneev V.V., Orlov V.L., Orlov A.V., Al'-Samavi A.H., Greben'kov A.A. Radiation resistance of construction materials of nuclear power plants (Radiacionnaya stoikost' konstruktsionnyh materialov yadernoenergeticheskih ustanovok). Polzunovskij vestnik, 2004;(1):29–35 (in Russ.).

6. Fakioglu E., Yurum Y., Veziroglu T. A review of hydrogen systems based on boron and its compounds. Int. J. Hydrogen Energy, 2004;29:1371–1376.

7. Bazile A., Galluchchi F., Yullianelli A. Research Institute of Membrane Technology (Issledovaniya instituta membrannyh tekhnologii). Nacional'nyi nauchnyi tsentr Italii (itm-cnr) po polucheniyu vodoroda v membrannyh reaktorah. Vserossiiskii institut nauchnoi i tekhnicheskoi informatsii (VINITI). Informacionnoanaliticheskii zhurnal. Seriya. Kriticheskie tekhnologii. Membrany, 2007;2(34):3–21 (in Russ.).

8. Azhazha V.M., Tihonovskij M.A., Shepelev A.G., Kurilo Yu.P., Ponomarenko T.A., Vinogradov D.V. Materials for hydrogen storage: analysis of development trends based on data on information flows (Materialy dlya hraneniya vodoroda: analiz tendencii razvitiya na osnove dannyh ob informatsionnyh potokah). Voprosy atomnoi nauki i tekhniki, 2006; no. 1. Seriya: Vakuum, chistye materialy, sverhprovodniki (15), pp.145–152 (in Russ.).

9. Oudriss A., Creus J., Bouhattate J., Conforto E., Berziou C., Savall C., Feaugas X. Grain size and grainboundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Materialia, 2012;60:6814–6828.

10. Sudzuki K., Fudzimori H., Hasimoto K. Amorphous metals (Amorfnye metally). Moscow: Metallurgiya Publ., 1987; 328 p. (in Russ.).

11. Alefel'd G., Fyol'kl' I. Hydrogen in metals (Vodorod v metallah). Vol. 1. Osnovnye svoistva. Moscow: Mir Publ., 1981; 476 p.(in Russ.).

12. Alefel'd G., Fyol'kl' I. Hydrogen in metals (Vodorod v metallah). Vol. 2. Prikladnye aspekty. Moscow: Mir Publ., 1978; 430 p.(in Russ.).

13. Tovbin Yu.K., Votyakov E.V. Assessment of influence of the dissolved hydrogen on the mechanical properties of palladium (Otcenka vliyaniya rastvorennogo vodoroda na mekhanicheskie svoistva palladiya). Fizika tverdogo tela, 2000;42(7): 1158 –1160 (in Russ.).

14. Beloglazov G.S., Beloglazov S.M. Protection against corrosion and hydrogenation of steel with organic inhibitors: experimental and quantum chemical studies (Zashchita ot korrozii i navodorozhivaniya stali organicheskimi ingibitorami: eksperimental'nye i kvantovohimicheskie issledovaniya). Vestnik baltiiskogo federal'nogo universiteta im. I. Kanta, 2013;1:30–38 (in Russ.).

15. Goltsova M.V. The interaction of hydrogen with metals (Vodorodnaya obrabotka materialov: istoriya razvitiya i perspektivy ). Nauka – obrazovaniyu, proizvodstvu, ekonomike: materialy 14 Mezhdunarodnoi nauchnotekhnicheskoi konferentsii. – Minsk: BNTU, 2016. – Vol. 1. – P. 364–366 (in Russ.).

16. Gaponcev A.V., Kondrat'ev V.V. Hydrogen diffusion in disordered metals and alloys (Diffuziya vodoroda v neuporyadochennyh metallah i splavah). Uspekhi fizicheskih nauk, 2003;173(10):1107–1129 (in Russ.).

17. Vlasov N.M., Chelyapina O.I. Control parameters of diffusion kinetics in cylindrical shells (Parametry` upravleniya diffuzionnoi kinetikoi v cilindricheskih obolochkah). Izvestiya RAN. Seriya fizicheskaya, 2015; 79(9):1225–1229 (in Russ.).

18. Dragunov Yu.G., Vlasov N.M., Ivanov S.D., Fedik I.I. Self-balanced internal stresses (Samouravnoveshennye vnutrennie napryazheniya). Moscow: MGOU Publ., 2010; 391p. (in Russ.).

19. Vlasov N.M., Zvyaginceva A.V. Mathematical modeling of metal hydrogen permeability (Matematicheskoe modelirovanie vodorodnoi pronitsaemosti metallov). Monografiya. Voronezh: VGTU Publ., 2012; 247 p.(in Russ.).

20. Vlasov N. M., Fedik I. I. Hydrogen permeability of metals in the presence of internal stresses (Vodorodnaya pronitsaemost` metallov pri nalichii vnutrennih napryazhenii). Tyazheloe mashinostroenie, 2007;(3):15–18 (in Russ.).

21. Kudinov G.M., Lyubov B.Ya. The effect of structural defects on the diffusion of impurity penetration in metals (Vliyanie strukturnyh defektov na diffuziyu primesei vnedreniya v metallah). FMM, 1981;51(6):1297–1300 (in Russ.).

22. Kuhtin B.A., Magazin I.O. Identification of the model of hydrogen permeability of metals (Identifikatsiya modeli vodorodopronitsaemosti metallov). Izv. Vuzov. Himiya i him. Tekhnologiya, 2006;49(8):117–118 (in Russ.).

23. Lewis F.A. Solubility of hydrogen in metals. Pure & Appl. Chern.,1990;62(11):2091–2096.

24. Lyubov B.Ya. Diffuse changes in the defective structure of solids (Diffuzionnye izmeneniya defektnoi struktury tverdyh tel). Moscow: Metallurgiya Publ., 1985; 202 p. (in Russ.).

25. Malkovich R.Sh. Diffusion in a solid with the formation and disintegration of fixed complexes (Diffuziya v tverdom tele s obrazovaniem i raspadom nepodvizhnyh kompleksov). Pis'ma v ZhTF, 2003;29(10):54–61 (in Russ.).

26. Teodosiu K. Elastic models of defects in crystals. Berlin,1982 (Russ. ed: Indenbom V.L. Uprugie modeli defektov v kristallah. Moscow: Mir Publ., 1985); 351 p.(in Russ.)

27. Andrievsky R.A. Hydride Material Science (Materialovedenie gidridov). Moscow: Metallurgiya Publ., 1986; 129 p.(in Russ.).

28. Kalabuhova N.A. Study of the absorption and diffusion of hydrogen in FCC metals by the method of molecular dynamics (Issledovanie absorbtsii i diffuzii vodoroda v GCzK metallah metodom molekulyarnoi dinamiki): Ph.D. disertation (Physics and Mathematics). Barnaul, 2014; 129 p. (in Russ.).

29. Lyubov B.Ya. Diffusion processes in inhomogeneous solid media (Diffuzionnye protsessy v neodnorodny tverdyh sredah). Moscow: Nauka Publ., Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1981; 296 p. (in Russ.).

30. Materials of the international scientific seminar “Nonlinear models in mechanics, statistics, field theory and cosmology – GRACOS-16” (Materialy mezhdunarodnogo nauchnogo seminara “Nelineinye modeli v mehanike, statistike, teorii polya i kosmologii – GRACOS-16”). In prof. Yu.G. Ignat'ev (ed.). Lectures, schools and materials of seminar (Lektsii shkoly i materialy seminara). Kazan': Akademii nauk RT Publ., 2016;рр. 245–251 (in Russ.).

31. Zvyagintseva A.V. On the Stability of Defects in the Structure of Electrochemical Coatings. In A.V. Zvyagintseva, Yu.N. Shalimov (eds.). Surface Engineering and Applied Electrochemistry, 2014;50(6):466–477 (in Eng.).

32. Zvyaginceva A.V. Structural traps in nickel electrochemical systems for hydrogen atoms (Strukturnye lovushki v elektrohimicheskih nikelevyh sistemah dlya vodorodnyh atomov).Theses of IV Intern. scientific conf. “Nanoscale systems: structure, properties, technologies (NANSIS – 2013)” (Tezisy IV Mezhdunar. nauch. konf. “Nanorazmernye sistemy: stroenie, svoistva, tekhnologii (NANSIS–2013)”). Kiev, Nov. 19–22, 2013; p.27.

33. Lihachev V.A., Hairov R.Yu. Introduction to the theory of dislocations (Vvedenie v teoriyu dislokatsii). Leningrad: Leningradskogo universiteta Publ., 1975; 184p. (in Russ.).

34. Zvyaginceva A.V. Determination of the hydrogen capacity of structural defects (Opredelenie vodorodnoi emkosti strukturnyh defektov). International Scientific Journal for Alternative energy and Ecology (ISJAEE), 2015;21:145–149 (in Russ.).

35. Malkovich R.Sh. Diffusion in a solid body due to the formation and disintegration of immobile complexes (Diffuziya v tvyordom tele s obrazovaniem i raspadom nepodvizhnyh kompleksov). Pis'ma v ZhTF, 2003;29(10):54–61 (in Russ.).

36. Pisarev A.A., Cvetkov I.V., Marenkov E.D., Yarko S.S. Hydrogen permeability through metals: a tutorial (Pronitsaemost' vodoroda cherez metally: uchebnoe posobie). Moscow: MIFI Publ., 2008;144 p.(in Russ.).


Review

For citations:


Zvyagintseva A.V. Mathematical Model of Hydrogen Permeability of Metals with Impurities Traps in the Presence of Internal Stresses of Various Physical Nature. Alternative Energy and Ecology (ISJAEE). 2019;(19-21):29-44. (In Russ.) https://doi.org/10.15518/isjaee.2019.19-21.029-044

Views: 754


ISSN 1608-8298 (Print)