Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

CuO/ZnO Catalysts for Methanol Steam Reforming: the Role of the Upport Polarity Ratio and Surface Area

https://doi.org/10.15518/isjaee.2019.19-21.045-060

Abstract

The effect of surface area and polarity ratio of ZnO support on the catalytic properties of CuO/ZnO catalyst for methanol steam reforming (MSR) are studied. The surface area of ZnO was varied changing the calcination temperature, and its polarity ratio was modified using different Zn precursors, zinc acetate and zinc nitrate. It was found that the copper dispersion and copper surface area increase with the surface area of the ZnO support, and the polarity ratio of ZnO strongly influences the reducibility of copper species. A higher polarity ratio promotes the reducibility, which is attributed to a strong interaction between copper and the more polar ZnO support. Interestingly, it was observed that the selectivity of CuO/ZnO catalysts (lower CO yield) increases with the polarity ratio of ZnO carriers. As another key result, CuO/ZnOAc-375 catalyst has proven to be more selective (up to 90%) than a reference CuO/ZnO/Al2O3 sample (G66-MR, Süd Chemie). The activity of the best performing catalyst, CuO/ZnOAc-375, was assessed in a Pd-composite membrane reactor and in a conventional packed-bed reactor. A hydrogen recovery of ca. 75% and a hydrogen permeate purity of more than 90% was obtained. The Pd-based membrane reactor allowed to improve the methanol conversion, by partially suppressing the methanol steam reforming backward reaction, besides upgrading the reformate hydrogen purity for use in HT-PEMFC.

About the Authors

Сecilia Mateos-Pedrero
Universidade do Porto
Portugal
LEPABE-Departamento de Engenharia Química, Faculdade de Engenharia


Hugo Silva
Universidade do Porto
Portugal
LEPABE-Departamento de Engenharia Química, Faculdade de Engenharia


David A. Pacheco Tanaka
Universidade do Porto
Portugal
LEPABE-Departamento de Engenharia Química, Faculdade de Engenharia


S. Liguory
ITM-CNR
Italy


Adolfo Iulianelli
ITM-CNR
Italy


Angelo Basile
ITM-CNR
Italy


Adelio Mendes
Universidade do Porto
Portugal
LEPABE-Departamento de Engenharia Química, Faculdade de Engenharia


References

1. Sá S., Silva H., Brandão L., Sousa J.M., Mendes A. Catalysts for methanol steam reforming—a review. Appl. Catal. B: Environ., 2010;99:43–57.

2. Chinchen G.C., Waugh K.C. The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal., 1986;25:101–107.

3. Yong S.T., Ooi C.W., Chai S.P., Wu X.S. Review of methanolreforming-Cu-based catalysts, surface reaction mechanisms, and reactionschemes. Int. J. Hydrogen Energy, 2013;38:9541–9552.

4. Spencer M.S. The role of zinc oxide in Cu/ZnO catalysts for methanolsynthesis and the water–gas shift reaction. Top. Catal., 1999;8:259–266.

5. Berens M., Studt F., Kasatkin I., Kühl S., Hävecker M., Abild-Pedersen F., Zander S., Girgsdies F., Kurr P., Kniep B.L., Tovar M., Fischer R.W., Nørskov J.K., Schlögl R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012;336:893–897.

6. Kanai Y., Watanabe T., Fujitani T., Uchijima T., Nakamura J. The synergybetween Cu and ZnO in methanol synthesis catalysts. Catal. Lett., 1996;38:157–163.

7. Karim A.M., Conant T., Datye A.K. Controlling ZnO morphology for improvedmethanol steam reforming reactivity. Phys. Chem. Chem. Phys., 2008;10:5584–5590.

8. Smith G.K., Lina S., Laia W., Datyeb A., Xiec D., Guo H. Initial steps in methanolsteam reforming on PdZn and ZnO surfaces: density functional theory studies,Surf. Sci., 2011;605:750–759.

9. Boucher M.B., Goergen S., Yia N., Flytzani-Stephanopoulos M. Shape effects’ inmetal oxide supported nanoscale gold catalysts. Phys. Chem. Chem. Phys., 2011;13:2517–2527.

10. Boucher M.B., Yi N., Gittleson F., Zugic B., Saltsburg H., Flytzani-Stephanopoulos M. Hydrogen production from methanol over goldsupported on ZnO and CeO2 nanoshapes. J. Phys. Chem.: C, 2010;115:1261–1268.

11. Silva H., Mateos-Pedrero C., Magén C., Pacheco-Tanaka D.A., Mendes A. Simple hydrothermal synthesis method for tailoring the physicochemicalproperties of ZnO: morphology, surface area and polarity. RSC Adv., 2014;4:31166–31176.

12. Lin Y.M., Rei M.H. Study on hydrogen production from methanol steamreforming in supported palladium membrane reactor. Catal. Today, 2001;67:77–84.

13. Hu X., Chen W., Huang Y. Fabrication of Pd/ceramic membranes for hydrogenseparation based on low-cost macroporous ceramics with pencil coating. Int. J. Hydrogen Energy, 2010;35:7803–7808.

14. Huang Y., Dittmeyer R. Preparation of thin palladium membranes on a porous support with rough surface. J. Membr. Sci., 2007;302:160–170.

15. Li A.W., Grace J.R., Lim C.J. Preparation of thin Pd-based composite membraneon planar metallic substrate part II. Preparation of membranes by electroles splating and characterization. J. Membr. Sci., 2007;306:159–165.

16. S. Liguori, A. Iulianelli, F. Dalena, P. Pinacci, F. Drago, M. Broglia, Y. Huang, A.Basile, Performance and long-term stability of Pd/PSS and Pd/Al2O3 membranes for hydrogen separation. Membranes, 2014;4:143–162.

17. Itoh N., Kaneko Y., Igarashi A. Efficient hydrogen production via methanolsteam reforming by preventing back-permeation of hydrogen in a palladium membrane reactor. Ind. Eng. Chem. Res., 2002;41:4702– 4706.

18. Liguori S., Iulianelli A., Dalena F., Piemonte V., Huang Y., Basile A. Methanol steam reforming in an Al2O3 supported thin Pd-layer membrane reactor over Cu/ZnO/Al2O3 catalyst. Int. J. Hydrogen Energy, 2014;39:18702–18710.

19. Basile A., Hydrogen production using Pd-based membrane reactors for fuelcells. Top. Catal., 2008;51:107–122.

20. Sà S., Sousa J.M., Mendes A. Methanol steam reforming in a dual-bedmembrane reactor for producing PEMFC grade hydrogen. Catal. Today, 2010;156:254–260.

21. Iulianelli A., Longo T., Basile A. Methanol steam reforming in a dense Pd–Ag membrane reactor: the pressure and WHSV effects on CO-free H2 production. J. Membr. Sci., 2008;323:235–240.

22. Iulianelli A., Longo T., Basile A. Methanol steam reforming reaction in a Pd–Agmembrane reactor for CO-free hydrogen production. Int. J. Hydrogen Energy, 2008;33:5583–5588.

23. Ghasemzadeh K., Liguori S., Morrone P., Iulianelli A., Piemonte V., Babaluo A.A., Basile A. H2 production by low pressure methanol steam reforming in a dense Pd–Ag membrane reactor in co-current flow configuration: experimental and modeling analysis. Int. J. Hydrogen Energy, 2013;36:16685–16697.

24. Sà S., Silva H., Sousa J.M., Mendes A. Hydrogen production by methanolreforming in a membrane reactor: palladium vs carbon molecular sieve membranes. J. Membr. Sci., 2009;339:160–170.

25. Iulianelli A., Ribeirinha P., Mendes A., Basile A. Methanol steam reforming forhydrogen generation via conventional and membrane reactors: a review. Renew. Sust. Energy Rev., 2014;29:355–368.

26. Amorim de Carvalho M.C.N., Passos F.B., Schmal M. Quantification of metallicarea of high dispersed copper on ZSM-5 catalyst by TPD of H2. Catal. Commun., 2002;3:503–509.

27. Froment G.F., Bischoff K.B. Chemical Reactor Analysis and Design, second ed.,Wiley, New York, 1990.

28. Muhler M., Nielsen L.P., Törnqvist E., Clausen B.S., Topsøe H. Temperature-programmed desorption of H2 as a tool to determine metalsurface areas of Cu catalysts. Catal. Lett., 1992;14:241–249.

29. Sanches S.G., Huertas Flores J., de Avillez R.R., Pais da Silva M.I. Influence ofpreparation methods and Zr and Y promoters on Cu/ZnO catalysts used formethanol steam reforming. Int. J. Hydrogen Energy, 2012;37:6572–6579.

30. Wang L.-C., Liu M. Y.-Mei, Chen, Cao Y., He H.-Y., Wu G.-S., Dai W.-L., Fan K.-N. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dryoxalate-precursor synthesis. J. Catal., 2007;246:193–204.

31. Kniep B.L., Girgsdies F., Ressler T. Effect of precipitate aging on themicrostructural characteristics of Cu/ZnO catalysts for methanol steamreforming. J. Catal., 2005;236:34–44.

32. Zhang H., Sun J., Dagle V.L., Halevi B., Datye A.K., Wang Y. Influence of ZnO facets on Pd/ZnO catalysts for methanol steam reforming. ACS Catal., 2014;4:2379–2386.

33. Kurtz M., Bauer N., Buscher C., Wilmer H., Hinrinchen O., Becker R., Rabe S., Merz K., Driess M., Fischer R.A., Muhler M. New synthetic routes to more active Cu/ZnO catalysts used for methanol synthesis. Catal. Lett., 2004;92:49–52.

34. Baltes C., Vukojevic S., Schuth D. Correlations between synthesis precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J. Catal., 2008;258:334–344.

35. Natesakhawat S., Lekse J.W., Baltrus J.P., Ochodnicki P.R., Howard B.H., Deng X., Matranga C. Active sites and structure–activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal., 2012;2:1667–1676.

36. Pacholski C., Kornowski A., Weller H. Selfassembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed., 2002;41:1188–1191.

37. Dulub O., Batzill M., Diebold U. Growth of copper on single crystalline ZnO: surface study of a model catalyst. Top. Catal., 2005;36:65–76.

38. Wöll C. The chemistry and physics of zinc oxide surfaces. Prog. Surf. Sci., 2007;82:55–120.

39. Campbell C.T., Peden C.H.F. Oxygen vacancies and catalysis on ceria surfaces. Science, 2005;309:713–714.

40. Hyman M.P., Lebarbie V.M., Abhaya Y.W., Datye K., Vohs J.M. A comparison of the reactivity of Pd supported on ZnO(1010) and ZnO(0001). J. Phys. Chem. C, 2009;113:7251–7259.

41. Halevi B., Peterson E.J., DeLaRiva A., Jeroro

42. E., Lebarbier V.M., Wang Y., Vohs J.M., Kiefer B., Kunkes E., Havecker M., Behrens M., Schlögl R., Datye A.K. Aerosol-derived bimetallic alloy powders: bridging the gap. J. Phys. Chem. C, 2010;114:17181–17190.

43. Halevi B., Peterson E.J., Roi A., DeLaRiva A., Jeroro E., Gao F., Wang Y., Vohs J.M., Kiefer B., Kunkes E., Havecker M., Behrens M., Schlögl R., Datye A.K. Catalytic reactivity of face centered cubic PdZnα for the steam reforming of methanol. J. Catal., 2012;291:44–54.


Review

For citations:


Mateos-Pedrero С., Silva H., Pacheco Tanaka D.A., Liguory S., Iulianelli A., Basile A., Mendes A. CuO/ZnO Catalysts for Methanol Steam Reforming: the Role of the Upport Polarity Ratio and Surface Area. Alternative Energy and Ecology (ISJAEE). 2019;(19-21):45-60. (In Russ.) https://doi.org/10.15518/isjaee.2019.19-21.045-060

Views: 1272


ISSN 1608-8298 (Print)