Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Evaluation of the Systemic Efficiency of the Hydrogen Facility Based on the Closed Hydrogen Cycle at Nuclear Power Plants

https://doi.org/10.15518/isjaee.2019.22-27.042-052

Abstract

The article substantiates the actuality of providing NPPs with basic electric load in the conditions of increasing their share in the structure of power systems. In this regard, as an alternative way to using the pumped storage power plant (PSPP), on the basis of the scientific base of the authors of the article, schemes for combining the hydrogen facility with nuclear power plants with justification for their effectiveness are given. These are combination schemes in which the steam obtained from burning hydrogen with oxygen is mixed with the steam of the steam turbine cycle of a nuclear power plant and overheats it. At the same time, peak power generation at NPPs when combined with the hydrogen facility is efficiently possible when using steam-hydrogen overheating of fresh steam through the use of a two-stage hydrogen-oxygen combustion chamber installed in front of the high pressure cylinder of the steam turbine. A variant is possible with the installation of a constantly operating low capacity additional steam turbine, which, along with obtaining additional peak power, can improve the reliability of power supply for the needs of nuclear power plants in conditions of major system emergency with disconnect due to the use of steam obtained from residual heat in reactors. A new combination scheme based on a closed hydrogen cycle has been developed in which the steam initially obtained from hydrogen combustion additionally heats the feed water before entering the steam generator and then overheats the steam of the steam turbine cycle of the nuclear power plant in front of the turbine without mixing due to the use of heat-exchange heating surfaces. In the scheme provides a catalytic afterburner of unreacted hydrogen. The systemic efficiency of the newly developed scheme is investigated. Initial data and a methodology for provide equal supply of peak electricity at compared with the PSPP are given. The results of evaluating the effectiveness of additional heating of feed water and overheating of fresh steam in front of the turbine are presented. It is shown that the use of most of the heat from the combustion of hydrogen for the initial overheating of fresh steam is thermodynamically more effectively, since it reduces the cost of replacement power at compared with the PSPP. The results of the net present value evaluation in the compared variants are presented. The variant of the hydrogen facility with the lowest cost of replacement power is shown to compete with the PSPP at its specific investment of $ 660 / kW. PSPP options with a specific investment of more than $ 660 / kW are not competitive with the hydrogen facility.

About the Authors

R. Z. Aminov
Saratov Scientific Center of the Russian Academy of Sciences
Russian Federation

Rashid Aminov - D.Sc. in Engineering, Professor, Chief Researcher at Saratov Scientific Center of RAS.

24 RabochayaStr., Saratov, 410028.

tel.: +7(845-2)27-14-36; fax: (845-2)27-14-36.

Scopus Author ID: 7006689108

Research ID: O-3305-2014

h-index: 8



A. N. Bairamov
Saratov Scientific Center of the Russian Academy of Sciences
Russian Federation

Artem Bairamov - Ph.D. in Engineering, Senior Researcher at Saratov Scientific Center of the RAS.

24 Rabochaya Str., Saratov, 410028.

tel.: +7(845-2)27-14-36; fax: (845-2)27-14-36.

SPIN-код: 1620-2441

Scopus Author ID: 35224451800

h-index: 7



References

1. The energy strategy of Russia for the period until 2035 (Energeticheskaya strategiya Rossii na period do 2035), Ministry of Energy of the Russian Federation (Ministerstvo energetiki Rossiiskoi Federatsii). Moscow, 2014; 263 p. (in Russ.).

2. Aminov R.Z., Hrustalev V.A., Duhovenskiy A.S., Osadchiy A.I. VVER NPPs: modes, characteristics, efficiency (AES s VVER: rezhimy, harakteristiki, effektivnost'). Moscow: Energoatomizdat, 1990; 264 p. (in Russ.).

3. Kuznetsov N.M., Kanaev A.A., Kopp I.Z. Power equipment of NPP units (Energeticheskoe oborudovanie blokov AES) 2-e izd. Leningrad: Mashinostroenie Publ., 1987; 279 p. (in Russ.).

4. Tarasov B.P., Lototsky M.V. Hydrogen for Energy: Problems and Prospects (Vodorod dlya proizvodstva energii: Problemy i perspektivy). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2006;(8):72–90 (in Russ.).

5. Brusnicyn A. Two scenarios for the development of hydrogen technologies (Dva stsenariya razvitiya vodorodnyh tekhnologii). Mirovaya energetika, 2007;(6):46–48 (in Russ.).

6. Ponomarev-Stepnoy N. N., Stolyarevskiy A.Ya. Hydrogen atomic energy (Atomno-vodorodnaya energetika). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2004;(3):5–10 (in Russ.).

7. Dmitriev A.L., Prohorov N.S. Prospects for the use of hydrogen as an energy carrier (Perspektivy primeneniya vodoroda v kachestve energonositelya). Himicheskaya promyshlennost', 2003;80(10):27–29 (in Russ.).

8. Koroteev A.S., Mironov V.V., Smolyarov V.A. Prospects for the use of hydrogen in vehicles (Perspektivy ispol'zovaniya vodoroda v transportnyh sredstvah). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2004;(1):5–13 (in Russ.).

9. Aminov R.Z., Bairamov A.N., Garievsky M.V. Assessment of the Performance of a Nuclear-Hydrogen Power Generation System. Thermal Engineering, 2019;66(3):196–209.

10. Shpil'rayn E.E., Malyshenko S.P., Kuleshov Introduction to Hydrogen Energy (Vvedenie v vodorodnuyu energetiku). Moscow: Energoatomizdat Publ., 1984; 264 p. (in Russ.).

11. Malyshenko S.P. Research and development of the Joint Institute for High Temperatures of the Russian Academy of Sciences in the field of hydrogen energy technologies (Issledovaniya i razrabotki OIVT RAN v oblasti tekhnologii vodorodnoi energetiki), International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2011;(3):10–34 (in Russ.).

12. Shpil'rain E.E., Sarumov Yu.A., Popel' O.S. The use of hydrogen in the energy sector and in energy technology complexes (Primenenie vodoroda v energetike i v energo-tekhnologicheskih kompleksah). Atomno-vodorodnaya energetika i tekhnologiya, 1982;4:5–22 (in Russ.).

13. Malyshenko S.P., Nazarova O.V., Sarumov Yu.A. Some thermodynamic and technical and economic aspects of the use of hydrogen as an energy carrier in the energy sector (Nekotorye termodinamicheskie i tekhniko-ekonomicheskie aspekty primeneniya vodoroda kak energonositelya v energetike). Atomno-vodorodnaya energetika i tekhnologiya, 1986;7:105–126 (in Russ.).

14. Stolyarevskiy A.Ya. Secondary energy storage (Akkumulirovanie vtorichnoi energii). Atomno-vodorodnaya energetika i tekhnologiya, 1982;4:60–125 (in Russ.).

15. Hrustalev V.A. On some aspects of the efficiency of water electrolysis at nuclear power plants (O nekotoryh aspektah effektivnosti elektroliza vody na AES). Povyshenie effektivnosti i optimizaciya teploenergeticheskih ustanovok: sb. nauchn. tr., Saratov: SPI; 1988; pp. 19–22 (in Russ.).

16. Aminov R.Z., Bairamov A.N. Combination of hydrogen energy cycles with nuclear power plants (Kombinirovanie vodorodnykh energeticheskikh tsiklov s atomnymi elektrostantsiyami). Moscow Nauka Publ., 2016; 254 p. (in Russ.).

17. Patent 2427048 RF Hydrogen combustion system for steam-hydrogen overheating of fresh steam in the cycle of a nuclear power plant, (Sistema szhiganiya vodoroda dlya paro-vodorodnogo peregreva svezhego para v tsikle atomnoi elektricheskoi stantsii), 2011 (in Russ.).

18. Aminov R.Z., Bairamov A.N., Garievskij M.V. Evaluation of the systemic efficiency of a multifunctional hydrogen complex at nuclear power plants (Otsenka sistemnoi effektivnosti mnogofunktsional'nogo vodorodnogo kompleksa na AES). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;(13–15):24–39(in Russ.).

19. Aminov R.Z., Yurin V.E., Egorov A.N. Combining NPPs with multifunctional power plants (Kombinirovanie AES s mnogofunkcional'nymi energeticheskimi ustanovkami). Moscow: Nauka Publ., 2018; 238 p. (in Russ.).

20. Zayavka na poleznuyu model' 2019125899. Sistema bezopasnogo ispol'zovaniya vodoroda pri povyshenii moshchnosti dvuhkonturnoi AES vyshe nominal'noi / Bairamov A. N., Aminov R. Z.; zayavl. 08.15.2019. (in Russ.).

21. Aminov R.Z., Shkret A.F., Garievskii M.V. Thermal and nuclear power plants: Competitiveness in the new economic conditions. Thermal Engineering, 2017;64(5):319–328.

22. Bairamov A.N. Technical and economic aspects of the underground arrangement of metal storage tanks for hydrogen and oxygen as part of the hydrogen energy complex (Tekhniko-ekonomicheskie aspekty podzemnogo raspolozheniya metallicheskih emkostei hraneniya vodoroda i kisloroda v sostave vodorodnogo energeticheskogo kompleksa). Trudy Akademenergo, 2014;(2):79–86 (in Russ.).

23. Birol F. Golden rules for a golden age of gas: world energy outlook special report on unconventional gas. International Energy Agency, 2012; 155 p.

24. The evolution of world energy markets and its consequences for Russia (Evolyutsiya mirovyh energeticheskih rynkov i ee posledstviya dlya Rossii) / Ed. A.A. Makarova, L.M. Grigor'eva, T.A. Mitrovoi. Moscow: INEI RAN–AC pri Pravitel'stve RF: p. 400 (in Russ.).

25. Makarov A.A., Veselov F.V., Makarova A.S. et al. Strategic Prospects for the Russian Electric Power Industry (Strategicheskie perspektivy elektroenergetiki Rossii). Thermal engineering, 2017;(11):40–52 (in Russ.).


Review

For citations:


Aminov R.Z., Bairamov A.N. Evaluation of the Systemic Efficiency of the Hydrogen Facility Based on the Closed Hydrogen Cycle at Nuclear Power Plants. Alternative Energy and Ecology (ISJAEE). 2019;(22-27):42-52. (In Russ.) https://doi.org/10.15518/isjaee.2019.22-27.042-052

Views: 547


ISSN 1608-8298 (Print)