

Safe and Wasteless Technologies Using Hydrogen Power Generation
https://doi.org/10.15518/isjaee.2019.22-27.064-078
Abstract
In Russia, the developing new safe and non-waste technologies for processing waste is an complex issue, in particular for development of the Arctic. This problem can be solved with the help of hydrogen electric power technologies. The article analyzes the structure and method of waste-free technologies of waste processing. The waste is divided into: the most common solid waste industry and life, including natural and man-made factors (landfills); liquid waste including sewage sludge household and rainwater, oil and other industrial waste; leachate landfills, including landfill gases; waste during transportation and transshipment of oil products, etc. The methods of purification and industrial shipping equipment and their characteristics for the application at facilities of the Arctic are described. These installations include: incinerators, installations for treatment of sewage and filtrate of sewage of MSW, desalination plants of reverse osmosis and with use of snow and ice melting installations, cleaning and filtration of flue gases with an emphasis on methods of electric cleaning, standers for loading and unloading of oil products and hazardous waste. The article shows the advantages of the use of hydrogen sources and energy storage using LNG in the Arctic both in terms of energy efficiency and ecology, the possibility of their use in conjunction with the above waste treatment plants. The characteristics of solid oxide and solid polymer fuel cells and their applications are presented. For the most dynamically developing solid oxide cells, the article gives their characteristics in simple and cogeneration cycles and presents the scope of their application in small and distributed energy at power up to 10 kW. The characteristics of traditional sources of electricity on the basis of ship and aircraft gas turbine units operating on LNG, which can be used in Autonomous power supply networks of Arctic facilities. Their advantages in terms of specific power in comparison with diesel power plants and storage devices are shown, but high LNG consumption and environmental indicators limit their use in the Arctic, taking into account the difficult logistics.
Comparison of the energy efficiency of traditional sources and hydrogen storage shows significant advantages of the latter, and if the efficiency of traditional sources increases with their power, the efficiency of storage devices does not change in the entire range of capacities. This circumstance makes the use of hydrogen sources and accumulators in the field of small capacities typical for Arctic consumers uncontested, especially taking into account the possibilities for safe and waste-free technology for processing industrial and life waste.
About the Authors
R. N. ShulgaRussian Federation
Robert Shulga - Ph.D. in Engineering, Leading Researcher, VEI – the Branch of the Federal State Unitary Enterprise RFNC – VNIITF.
12 Krasnokazarmennaya Str., Moscow, 111250.
tel.: +7 (903) 248 20 56.
SPIN РИНЦ: 5136-4188 по РИНЦ 41
Xio РИНЦ: 5
Researcher ID: A-9321-2014
Scopus Author ID: 6506511448
I. V. Putilova
Russian Federation
Irina Putilova - Ph.D. in Engineering, Associate Professor, Head of the Centre for Science and Education “Ecology of Power Engineering” of MPEI, Member of the Editorial Board from Russia of the Electronic Journal “Coal Combustion and Gasification Products” (www.coalcgp-journal.org).
14 Krasnokazarmennaya Str., Moscow, 111250.
tel./fax: +7 (495) 362 79 12.
Scopus Author ID: 6505929717
T. S. Smirnova
Russian Federation
Tatyana Smirnova - Leading Researcher, VEI – the Branch of the Federal State Unitary Enterprise RFNC – VNIITF.
12 Krasnokazarmennaya Str., Moscow, 111250.
N. S. Ivanova
Russian Federation
Natalia Ivanova - Bachelor, MPEI.
14 Krasnokazarmennaya Str., Moscow, 111250.
tel./fax: +7 (495) 362 79 12.
References
1. Approving the fundamentals of state policy of regional development of the Russian Federation for the period till 2025: the decree of the President of the Russian Federation of 16 January, 2017. No. 13 (Ob utverzhdenii osnov gosudarstvennoi politiki regional'nogo razvitiya Rossiiskoi Federatsii na period do 2025 g.: ukaz Prezidenta RF ot 16 yanvarya 2017 g. no. 1) [E-resource]. Available on: http://constitution.garant.ru/act/federative/71587690/ (03.12.2019) (in Russ.).
2. About modification of the order of the Government of the Russian Federation of April 21, 2014 No. 366: the order of the Government of the Russian Federation of August 31, 2017 No. 1064 (O vnesenii izmenenii v postanovlenie Pravitel'stva Rossiiskoi Federatsii ot 21 aprelya 2014g. no. 366: postanovlenie Pravitel'stva Rossiiskoi Federatsiiot 31 avgusta 2017 g no. 1064) [E-resource]. Available on: http://government.ru/docs/all/113146/ (03.12.2019).
3. Оn production and consumption waste Federal Law , 1998, as amended on 01.01.2009. No. 89 (Ob othodah proizvodstva i potrebleniya Federal'nyi Zakon 1998 g, s izmeneniyami 01.01.2019 g. № 89) [E-resource]. Available on:https://legalacts.ru/doc/FZ-ob-othodah-proizvodstva-i-potreblenija/ (03.12.2019).
4. Water code of the Russian Federation №282-FZ of 21.10 2013 (Vodnyi kodeks Rossiiskoi Federatsii №282-FZ ot 10.21.2013) [E-resource]. Available on: http://docs.cntd.ru/document/901982862 (03.12.2019).
5. Shulga R.N., Putilova I.V. DC multi-agent systems using RES and hydrogen fuel cells (Mul'tiagentnye sistemy postoyannogo toka s ispol'zovaniem VIE i vodorodnyh toplivnyh elementov). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;1–3:65–82 (in Russ.).
6. Shulga R. N., Putilova I. V. Arctic: ecology and hydrogen power engineering (Arktika: ekologiya i vodorodnaya elektroenergetika). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;4–6: 43–61 (in Russ.).
7. Rules of technical operation of thermal power plants, Order of the Ministry of energy of 08.22.2013 №469 (Pravila tehnicheskoi ekspluatatsii teplovyh energoustanovok Prikaz Minehnergo RF ot 08.22.2013 №469) [E-resource]. Available on: http://docs.cntd.ru/document/901856779 (03.12.2019).
8. International Convention for the prevention of pollution from ships", MARPOL 73/78 (Mezhdunarodnaya konventsiya po predotvrashcheniyu zagryazneniya s sudov) [E-resource]. Available on: http://docs.cntd.ru/document/901764502 (03.12.2019).
9. Shipboard incinerators (Sudovye insineratory) [E-resource]. Available on: https://gyazo.com/83f8a2c12958ac008fc0926984be9876 (03.12.2019).
10. The installation of thermal neutralization precipitation series E-50K (Ustanovka termicheskogo obezvrezhivaniya osadkov serii E-50K) [E-resource]. Available on: https://enviro.su/ Installation of thermal neutralization precipitation series E-50K (03.12.2019).
11. Marine sewage treatment plant SWCM-50 (Sudovaya ustanovka dlya ochistki stokov SWCM-50) [E-resource]. Available on: https://www.etwinternational.ru/5-2-marine-sewage-treatment-plant-29508.html, Marine sewage treatment plant SWCM-50 (03.12.2019).
12. Purification of landfill filtrate (Ochistka fil'trata-poligona TKO) [E-resource]. Available on: http://ntc-tbo.EN/catalog/ochistka_filtrata_poligona_tbo/ (03.12.2019).
13. Reverse osmosis desalination plant PRO-0,25 (Obratnoosmoticheskaya opresnitel'naya ustanovka PRO-0,25) [E-resource]. Available on: http://www.sudmash.EN/produce/sudmash/water-treatment/desalination-plants/pro025.html#prettyPhoto (03.12.2019).
14. Snow melting plants: types, device and principle of operation of the snow melting machine (Snegoplavil'nye ustanovkI: vidy, ustroistvo i princip raboty mashiny-snegotayalki) [E-resource]. Available on: https://rcycle.net/sneg-i-led/snegoplavilnaya-tehnika/ustanovki-vidy-ustrojstvo-i-principle-activity (03.12.2019).
15. Electrostatic filters for air purification (Elektrostaticheskie fil'try dlya ochistki vozduha) [E-resource]. Available on: http://podvi.ru/elektrobytovye-pribory/elektrostaticheskij-filtr.html (03.12.2019).
16. Water purification by TPU technology (Ochistka vody po tehnologii TPU) [E-resource]. Available on: https://tpu.ru/research/fields/water (03.12.2019).
17. Stander for loading and unloading in sea and river vessels S-150 (Stender dlya sliva-naliva v morskie i rechnye suda S-150) [E-resource]. Available on: http://zavod-neftemash.EN/stender-dlya-sliva-naliva-v-morskie-i-rechnye-suda-s-150/ (03.12.2019).
18. Veziroglu T.N. Energy system based on nuclear fusion of hydrogen (Energeticheskaya sistema na osnove termoyadernogo sinteza vodoroda). International Scientific Journal for Alternative Energy and Ecology" (ISJAEE), 2017;16–18:16–29; Available on: https://doi.org/10.15518/isjaee.2017.16-18.016-029 (03.12.2019.).
19. Bokris J.O'M., Veziroglu T.N., Smith D. Solar-hydrogen energy. The power to save the world (Solnechno-vodorodnaya energiya: sila, sposobnaya spasti mir). Translator D.O. Dunikov. Moscow: Publishing house of MEI, 2002; 164 p.
20. Solomin E., Kirpichnikova I., Amerkhanov R., Korobatov D., Lutovats M., Martyanov A. Wind-hydrogen standalone uninterrupted power supply plant for all-climate application. International Journal of Hydrogen Energy, 2019;44(7):3433–3449; Available on: https://doi.org/10.1016/j.ijhydene.2018.12.001 (03.12.2019.).
21. Bredikhin S.I., Golodnitsky A. E., Drozhzhin O. A., Istomin S.Ya., Kovalevsky V.P., Filippov S.P. Stationary power plants with fuel cells: materials, technologies, markets (Statsionarnye energeticheskie ustanovki s toplivnymi elementami: materialy, tehnologii, rynki). Moscow: NTF "Energoprogress" Corporation "EEC", 2017; 392 p.
22. SOFC general information (Obshchaya informatsiya TOTEh) [E-resource]. Available on: www.powergeneration.siemens.com (03.12.2019.).
23. Zakharenkov E.A. Study and optimization of schemes and parameters of hybrid power plants based on fuel cells and gas turbines (Issledovanie i optimizatsiya shem i parametrov gibridnyh elektrostantsii na osnove toplivnyh elementov i gazoturbinnyh ustanovok). Thesis of candidate of technical Sciences, Moscow Power Engineering Institute, Moscow, 2009;120 p. (in Russ.).
24. Shulga R.N. Autonomous power supply using heterogeneous generation (Avtonomnoye energosnabzheniye s ispol'zovaniyem raznorodnoy generatsii). Electro, 2015;3:7–11 (in Russ.).
25. Shulga R.N. On the possibility of creating a hybrid power distribution network of Gers with the accumulation of electricity (K voprosu o vozmozhnosti sozdaniya gibridnoi energoraspredelitel'noi seti GEHRS s nakopleniem elektroenergii). New in the Russian electric power industry, 2015;12:29–44 (in Russ.).
Review
For citations:
Shulga R.N., Putilova I.V., Smirnova T.S., Ivanova N.S. Safe and Wasteless Technologies Using Hydrogen Power Generation. Alternative Energy and Ecology (ISJAEE). 2019;(22-27):64-78. (In Russ.) https://doi.org/10.15518/isjaee.2019.22-27.064-078