

Vacancy-Cluster Structures Effecting to Metals Properties
https://doi.org/10.15518/isjaee.2019.22-27.079-091
Abstract
The paper carries out the analysis of the experimental results on the metals property changes under vacancy-cluster structure effects. We have considered two technological approaches of such structures obtaining. The first one is a nanopowders compaction under high (up to 5 GPa) hydrostatic compression, on example of a Ni nanopowder (70 nm). The second one is the Al and Pb crystallization under the high-intensity plastic deformation [ε′ = (102–104) sec–1] (НIPD) conditions on the solid and liquid boundary in the centrifugal casting machine with rotary speed up to 2000 rpm. Using the method of atomic force microscopy, vacancy cluster tubes (VCT) with average diameters of 39 nm for Al and 25 nm for Pb have been detected in the crystallized volume of Al and Pb metals. The paper discusses the physical model of a new substructure formation within the metals in the form of vacancy cluster tubes obtained in the process of HIPD during the process of mass crystallization of Al and Pb and the changes in the mechanical, magnetic, and superconducting properties of the above metals, which followed this process. During Al and Pb crystallization under HIPD range about [ε′ = (102–104) sec–1] with specially selected modes of metals crystallization in high-speed centrifugal casting machine, the special conditions are being created to achieve the dimensional effect of dynamic (shifting) recrystallization. Shifting deformation during centrifugal crystallization caused primarily by a large incline of the temperature field from the periphery (relative to the cold wall of the rotor) to the molten central part of the rotor. The difference in the angular velocities of the already frozen part of the metal (adjacent to the outer surface of the rotor wall) and the central part where the metal still remains in the molten state leads to a high-intensity deformation [ε′ = (102–104) sec–1] of the crystallized metal melt solidified phase. Since the grain sizes at the crystallized phase initially comprise around tens of nanometers (approximately crystal nucleation size), it becomes possible to achieve the dimensional effect of the dynamic re-crystallization of a “nanocrystalline” solidified metal at high shift of strain velocities. The “non-equilibrium vacancies” formed this way condense into vacancy clusters, which are formed in the centrifugal force field in the form of vacancy-shaped cluster tubes stretched out to the center of rotation of the rotor. The process proceeds under conditions far from the equilibrium in comparison with the usual crystallization of the metal from the melt. Such processes can lead to the formation of highly ordered non-equilibrium states characteristic of non-equilibrium open systems.
Keywords
About the Authors
V. I. NovikovRussian Federation
Victor Novikov - Ph.D. in Engineering, Dir. of Metal and Membranes Prj, Innovation Energo-Systems (IES) Lab., MISIS.
4 Leninsky Av., Moscow, 119049.
tel.: +7 (495) 955 00 32.
h-index 4
M. N. Levin
Russian Federation
Mark Levin - D.Sc. in Physics, Professor, Head of Innovation Energo-Systems (IES) Laboratory, MISIS.
4 LeninskyAv., Moscow, 119049.
tel.: +7 (495) 955 00 32.
h-index 8
V. G. Pevgov
Russian Federation
Vjacheslav Pevgov - Ph.D. in Physics, Project Manager of Alternative Power Systems, Head of Innovation Energo-Systems (IES) Laboratory, MISIS.
4 LeninskyAv., Moscow, 119049.
tel.: +7 (495) 955 00 32.
h-index 4
V. S. Ulyanov
Russian Federation
Viktor Ulyanov - Ph.D. in Control Engineering, Dep. Head of Innovation Enrgo-Systems Laboratory (IES) in MISIS.
4 Leninsky Av., Moscow, 119049.
tel.: +7 (495) 955 00 32.
h-index 2
References
1. Novikov V.I., Trusov L.I., Gryaznov V.G. Dimensional effect of recrystallization. Surface (Razmernuy effect rekristallizatsii). Physics, chemistry, mechanics, 1986;(1):134–139 (in Russ.).
2. Novikov V.I., Lapovok V.N., Svirida S.V. Formation of nonequilibrium vacancies in ultrafine Nickel powder under plastic flow under pressure (Obrazovanie neravnovesnih vakansii v ultradispersnom poroshke nikelya pri plasticheskom techenii pod davleniem). Physics of metals and metallurgy, 1984;57(4):718–722 (in Russ.).
3. Novikov V.I., Trusov L.I., Gryaznov V.G. Solid-phase transformations, initiated by the migrating boundaries (Tverdofaznye prevrasheniya, initsiirovannie migriruyshimi granicami): Vol. 17. Sat. The growth of crystals. Ed. Givargizov E.I. and Greenberg S.A. Moscow: Science Publ., 1988; pp. 69–86 (in Russ.).
4. Trusov L.I., Novikov V.I., Lopukhov Y.A., Lapovok V.N. Recrystallization in ultrafine systems (Rekristallizatsiya v ultradispersnih sistemah). Physicochemistry of ultradispersed systems. Moscow: Science Publ., 1987; pp. 67–74 (in Russ.).
5. Geguzin J.E., Paritskaya L.N., Bogdanov V.V., Novikov V.I. The features of recrystallization of ultrafine powder during sintering (Ob osobennostyah rekristallizatsii ulttradispersnih poroshkov pri spekanii). Physics of metals and metallurgy, 1983;55(4):768–773 (in Russ).
6. Lapovok V.N., Novikov V.I., Svirida S.V. Formation of nonequilibrium vacancies during recrystallization of ultrafine powder of Nickel (Obrazovanie neravnovesnih vakansiy pri rekristallizatsii ultradispersnogo poroshka nikelya). Solid State Physics,1983;25(6):1846–1848 (in Russ.).
7. Gorelik S.S., Blanter M.S. Formation of vacancies at recrystallization (Obrazovanie vakansiy pri rekristallizatsii). Izv. USSR Academy of Sciences. Metals, 1982;(2):90–93 (in Russ.).
8. Gleiter G., Chalmers B. Large-angle grain boundaries (Bolsheugloviye granici zeren). Moscow: Mir Publ., 1975; p. 374 (in Russ.).
9. Ievlev V.M. Thin films of inorganic materials: growth mechanism and structure: studies (Tonkie plenki neorganicheskih materialov: uchebnoe posobie). Benefit. Voronezh: VSU Publ., 2008; p. 496 (in Russ.).
10. Kosevich W.M., Ievlev V.M., Palatnik L.S., Fedorenko A.I. Structure of intergranular and interphase boundaries (Struktura mezhkristallitnih i mezhfaznih granits). Moscow: Metallurgy Publ.. 1980; p. 256 ( in Russ.).
11. Novikov V.I., Ganelin V.Ya., Trusov L.I. The effect of dilatation in the ultrafine crystal recrystallization in nickel (Effekt dilatatsii v ultradispersnom polikristalle nikelya). Solid State Physics, 1986;28(4):1251–1254 ( in Russ.).
12. Friedel J. Dislocations (Dislokatsiya). Moscow: Mir Publ., 1967; p. 643 ( in Russ.).
13. Novikov V.I., Ganelin V.Ya., Trusov L.I. Inhibition of recrystallization of ultrafine Ni powder under high hydrostatic pressure (Tormozhenie rekristallizatsii ulttradispersnogo poroshka Ni pri visokom gidrastaticheskom davlenii). Physics of metals, 1986;8(2):111–113 (in Russ.).
14. Trusov L.I., Novikov V.I., Repin I.A., Kazilin E.E., Ganelin V.Ya. Deformation of Ni ultrafine structure (Deformatsiya Ni s ulttradispersnoi strukturoi). Physics of metals, 1988;10(1):104–107 (in Russ.).
15. Trusov L.I., Khvostantseva T.P., Solov'ev V.A., Mel'nikova V.A. Low temperature stress relaxation of nanocrystalline nickel. Journal of Materials Science, 1995;30(11):2956–2961.
16. Trusov L.I., Khvostantseva T.P., Solov'ev V.A., Mel'nikova V.A. Stress relaxation following heating of nanocrystalline nickel. Nanostructured Materials, 1994;4(7):803–813.
17. Valiev R.Z., Mulikov Z.Z.,Mulikov H.Y., Novikov V.I., Trusov L.I. Curie temperature and saturation magnetization of Nickel with subgrain structure (Temperatura Kurii namagnichennost nasischeniya nikelya s subzernistoy strukturoi). Technical physics letters, 1989;15(1):78–81 (in Russ.).
18. Tarasov Y.I., Kryachko V.V., Novikov V.I. Development of new structured materials for aerospace industry (Razrabotka novih strukturirovannih materialov dlya aviatsionno-kosmicheskoy promishlennosti). Sat. scientific. article on the materials of the V International scientific.-prakt. Conf. "Academic Zhukovsky Reading", 22–23 Nov 2017. Voronezh: VUNTS VVS "VVA", 2018; pp. 255–257 ( in Russ.).
19. Tarasov Y.I., Kryachko V.V., Novikov V.I. Structuring Features at mass crystallization of melts Al and Pb under conditions of high-intensity plastic deformation during centrifugation (Osobennosti strukturirovaniya pri massovoy kristallizatsii rasplavov Al i Pb v usloviyah visokointensivnoy plasticheskoy deformatsii pri tsentrifugirovanii). Condensed matter and interphase boundaries, 2018;20(1):125–134 ( in Russ.)
20. Tarasov Y.I., Kryachko V.V., Novikov V.I. Peculiarities of structuring during the process of mass crystallization of Al and Pb melts under conditions of high-intensity plastic deformation during centrifugation. Book of abstract of the XIV International Conference on Nanostructured Materials (NANO 2018) 24–29 June, 2018. "City University of Hong Kong", 2018; p. 57.
21. Novikov V.I. Peculiarities of structuring during the process of mass crystallization of Al, Pb, Zn melts under conditions of high-intensity plastic deformation (HIPD) during centrifugation. 2018 Russia Advanced Technology Transfer Matchmaking Conference and AC-CICB International ST Project Meeting. Sep. 25, 2018. Beijing; pp. 12–15.
22. Novikov V.I., Spitsyn B.V., Soloviev E.M. The physical model of the formation of vacancy cluster of tubes and change the properties of metals at dynamic centrifugal casting (K fizicheskoi modeli obrazovaniya vakansionnih klasternih trubok ii zmenenie svoystv mettallov pri tsentrobezhnom dinamicheskom lit'e). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(15–18):96–103 (in Russ.).
23. Tarasov Y.I., Kryachko V.V., Novikov V.I. The vacancy cluster tubes formation and metal properties changes after dynamic centrifugal casting. American Journal of Modern Physics, 2018;7(6):194–202.
24. Haken G. Synergetics: Hierarchies of instabilities in selforganizing systems and devices (Ierarhii neustoychivostey v samoorganizuyuschihsya sistemah i ustroystvah). Moscow: Mir Publ., 1985; p. 419.
Review
For citations:
Novikov V.I., Levin M.N., Pevgov V.G., Ulyanov V.S. Vacancy-Cluster Structures Effecting to Metals Properties. Alternative Energy and Ecology (ISJAEE). 2019;(22-27):79-91. (In Russ.) https://doi.org/10.15518/isjaee.2019.22-27.079-091