Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Selection Criteria and Thermophysical Properties of Low-Temperature Heat Storage Materials for Thermal Energy Storage Systems (Review)

https://doi.org/10.15518/isjaee.2019.22-27.092-106

Abstract

The problem of energy efficiency and energy saving is one of the central for the development of modern civilization. In the Russian Federation and all over the world, scientists develop technologies for transition to environmentally friendly and resource-saving energy, search for new sources and ways of transporting and storing energy that will eventually reduce the use of electricity and reduce economic burden on the consumer. Low economic competitiveness and efficiency in comparison with traditional heat sources is the main problem of heat storage systems application in Russia. This problem can be solved by means of new short-term and long-term composite heat storage materials with different operating temperatures, heat transfer time, different heat storage density, etc., depending on the climatic conditions of the Russia regions. Despite a significant number of studies on the characteristics of heat-accumulating materials and attempts to systematize them, there are still no quantitatively reliable data, at the same time recommendations for selection are the basis for the development of optimal heat storage materials for specific applications. Thus the effective heat accumulators for storage of thermal energy for heating and hot water supply of buildings in difficult climatic conditions have not been created. The paper considers the basic principles of heat accumulation, the main types and properties of heat-accumulating materials, and also the criteria for their use in thermal energy storage systems for heating and hot water supply. We have preliminary carried out the selection of hydrated salts as potential materials for heating systems. On the basis of the factor analysis of the quantitative information systematized from available literary sources, we have carried out the data processing and proposed the scheme of the choice of the heat-accumulating materials for heating systems in difficult climatic conditions of Russia.

About the Authors

A. M. Morzhukhin
Dubna State University
Russian Federation

Artem Morzhykhin- Ph.D. student, Senior Lecturer of the Chemistry Department, Dubna State University.

19 Universitetskaya Str., Dubna, 141980.

tel.: +7(905)509 17 10.

h-index 1



D. S. Testov
Dubna State University
Russian Federation

Dmitriy Testov - Ph.D. student, Senior Lecturer of the Chemistry Department, Dubna State University

19 Universitetskaya Str., Dubna, 141980.

tel.: +7(905)509 17 10.



S. V. Morzhukhina
Dubna State University
Russian Federation

Svetlana Morzhukhina - Ph.D. in Chemistry, Assistant Professor at the Heat of the Chemistry Department, Dubna State University.

19 UniversitetskayaStr., Dubna, 141980.

tel.: +7(905)509 17 10.

h-index 4



V. Z. Korokin
Dubna State University
Russian Federation

Vitaliy Korokin - Ph.D. in Chemistry, Assistant Professor at the Chemistry Department Dubna State University.

19 Universitetskaya Str., Dubna, 141980.

tel.: +7(905)509 17 10.

h-index 3



References

1. Lin Y., Jia Y, Raghuram Alva G, Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable and Sustainable Energy Reviews, 2018;82:2730–2742.

2. Le Pierres B.S.N., Stutz B, Kuznik F, Johannes K, Palomo del Barrio E, Bedecarrats J, Gibout S, Marty P, Zalewski L, Soto J, Mazet N, Olives R, Bezin J, Pham Minh D. Storage of thermal solar energy. C. R. Physique, 2017;18:401–414.

3. Barreneche C., Navarro H., Cabeza L., Fernandez A. New database to select phase change materials: Chemical nature, properties, and applications. Journal of Energy Storage, 2015;3:18–24.

4. Pielichowska K., Pielichowski K. Phase change materials for thermal energy. Progress Mater. Sci, 2014;65:67–123.

5. Li T.X., Wu F., Wang R.Z. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. International Journal of Heat and Mass Transfer, 2017;115:148–157.

6. Belimenko S.S., Ishenko V. Development of criteria of effieciency of charge and dischrange of the solid heat storage (Razrabotka kriteriev effektivnosti zaryada i razryada tverdotel'nogo teplovogo akkumulyatora). Nauka ta progres transportu. Vіsnik Dnіpropetrovs'kogo natsіonal'nogo unіversitetu zalіznichnogo transportu, 2014;53(5):7–17 (in Russ).

7. Hammou Z.A., Lacroix M. A new PCM storage system for managing simultaneously solar and electric energy. Energy Build, 2006;38:258–65.

8. Gamataeva G.Yu., Gamataev T,. Omarova M., Shangeraeva M., Gasanaliev A., Maglaev D. Technical and operational properties of heating storage materials (Tekhniko-ekspluatatsionnye svoistva teploakkumuliruyushchih materialov). Materialy X vserossiiskoi nauchnoi konferentsii. Izdatel'stvo: Severo-Osetinskii gosudarstvennyi universitet im. K.L. Khetagurova (Vladikavkaz), 2016; pp. 187–190 (in Russ).

9. Nkwetta D.N., Hanhighat F. Thermal energy storage with phase change material—A state-of-the art review. Sustainable Cities and Society, 2014;10:87–100.

10. Sögütoglu L.C., Donkers P., Fischer H., Huinik H., Adan O. In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S. Applied Energy. 2018;215:159–173.

11. Jaguemont J., Omar N., Van de Bossche P., Van Mierlo J. Phase-change materials (PCM) for automotive applications: A review. Applied Thermal Engineering, 2018;132:308–320.

12. Du K., Calautit J., Wang Z., Wu Y., Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature range. Applied Energy, 2018;220:242–273.

13. Nazir H., Batool M., Bolivar Osorio F., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Mada Kannan A. Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 2019;129:491–523.

14. Bouhal T., Saif ed-Din F., Agrouaz Y., El Rhafiki T., Kouskou T., Jamil A. Numerical modeling and optimization of thermal stratification in solar hot water storage tanks for domestic applications: CFD study. Solar. Energy, 2017;157:441–455.

15. Huang H., Wang Z., Zhang H., Duo B., Huang X., Liang H.A., Goula M. An experimental investigation on thermal stratification characteristics with PCMs in solar water tank. Solar Energy, 2019;177:8–21.

16. Burak K., Okten K. Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement. Renew. Energy, 2018;16:639–646.

17. Ablaev R.R., Makarov B.B., Ablaev A.R. Heating storage in solar heat supply sistems of single houses (review) (Akkumulimrovanie tepla v sistemakh solnechnogo teplosnabzhe6niya domov individual'nogo pol'zovaniya (obzor). Vіsnik SevNTU: zb. nauk. pr. Vip. 153. Serіya: Mekhanіka, energetika, ekologіya. Sevastopol', 2014 (in Russ).

18. Yoram L., Shabtay Y., Black J. Compact hot water storage systems combining copper tube with high conductivity graphite and phase change materials. Energy Procedia, 2014;48:423–430.

19. Aleksandrov V.D., Sobol O.V., Sobolev A.Y., Marchenkova Y.A. Use of heating storage materials based on sodium salt crystalline hydrates in vehicles (Ispol'zovanie teploakkumuliruyushchikh materialov na osnove kristallogidratov solei natriya v transportnykh sredstvakh). Vіsnik Donets'koї akademії avtomobіl'nogo transportu, 2015;1:34–41 (in Russ).

20. Venkateswara V., Parameshwaran R., Ram V. PCM-mortar based construction materials for energy efficient buildings: A review on research trends. Energy and Buildings, 2018;158:95–122.

21. Xiao Q., Yuan W, Li L, Xu T. Fabrication and characteristics of composite phase change material based on Ba(OH)2•8H2O for thermal energy storage. Solar Energy Materials and Solar Cells, 2018;179:339–345.

22. Kee S.Y., Munusamy Y., Seng Ong K. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 2018;131:455–471.

23. Mumtaz M., Rahman S., A Al-Sulaiman F. A review for phase change materials (PCMs) in solar absorption refrigeration systems. Renewable and Sustainable Energy Reviews, 2017;76:105–137.

24. Liu Y.S., Yang Y. Use of nano-alpha-Al2O3 to improve binary eutectic hydrated salt as phase change material. Solar Energy Mater. Sol., 2017;160:18–25.

25. Bystrov V.P., Livchak A.V. Heaing storage using phase change (Teploakkumulyatory s ispol'zovaniem fazovogo perekhoda). Voprosy ekonomii teploenergeticheskikh resursov v sistemakh ventilyatsii i teplosnabzheniya: sb. nauch. trudov. Moscow: Izd-vo TsNIIEPIO, 1984; pp. 75–90 (in Russ).

26. Bal L.M., Satya S., Narayan Naik S. Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew. Sustain. Energy Rev., 2014;14:2298–2314.

27. Risti A., Furbo S., Schranzhofer H., Lazaro A., Kemik, Delgrado M., Zalewski L., Diarce G., Alkan C., Gunasekara S.N., et al. Engineering and processing of PCMs, TCMs and sorption material. Energy Procedia, 2016;91:207–217.

28. Zhou D., Eames P. Thermal characterisation of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures. Solar Energy Materials and Solar Cells, 2016;157:1019–1025.

29. Morofsky E. History of thermal energy storage. Thermal Energy Storage for Sustainable Energy Consumption, 2007;377–391.

30. Crespo A., Barreneche C., Ibara M., J. Platzer W. Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review. Solar Energy, 2018; DOI: 10.1016/j.solener.2018.06.101

31. Putra N., Rawi S., Amin M., Kusrini E., Kosasih E., Indra Mahlia T. Preparation of beeswax/multi-walled carbon nanotubes as novel shapestable nanocomposite phase-change material for thermal energy storage. Journal of Energy Storage, 2019;21:32–39.

32. Parameshwaran R., Sari A., Nandanavanam J., Karunakaran R. Applications of Thermal Analysis to the Study of Phase-Change Materials. Chapter 13 Handbook of Thermal Analysis and Calorimetry, 2018;6:519.

33. Leong K.Y., Mohd Rosdzimin A., Gurunathan B. Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. Journal of Energy Storage, 2019;21:18–31.

34. Gasanaliev A.M., Gamataeva B.Y. Heating storage properties of melts (Teploakkumuliruyushchie svoistva rasplavov). Uspekhi khimii, 2000;69(2):192–200 (in Russ).

35. Vitorino N., Abrantes J., Frade J. Quality criteria for phase change materials selection. Energy Conversion and Management, 2016;124:598–606;10.1016/j.enconman.2016.07.063.

36. Lin Y., Raghuram Alva G., Fang G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy, 2018;165:685–708.

37. Liu L., Su D., Tang Y., Fang G. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renewable Sustainable Energy Rev., 2016;62:305–317.

38. Conroy T., Collins M., Fisher J., Grimes R. Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers. Renewable Energy, 2018;129:150–167.

39. Borovskaya L.V. Investigation of thermodynamic properties of carboxylic acids by DSC method (Issledovanie termodinamicheskikh svoistv karbonovykh kislot metodom DSC). Fundamental'nye issledovaniya. Khimicheskie nauki, 2013;6:1120-1123 (in Russ).

40. Alva G., Liu L., Huang X., Fang G. Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews,2017;68:693–706.

41. Mozgovoi A.G., Schpilrain E.E., Dibirov M.A., Bochkov M.M., Levina L.N., Kenisarin M.M. Thermophysical properties of heating storage materials. Crystalline hydrates: reviews of thermophysical properties of substances (Teplofizicheskie svoistva teploakkumuliruyushchikh materialov. Kristallogidraty: Obzory po teplofizicheskim svoistvam veshchestv). TFTs. Moscow: IVTAN. 1990;82(2):3–105 (in Russ).

42. Wei G., Wang G., Xu C., Ju X., Xing L., Du X., Yang Y. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 2018;81:1771–1786.

43. Ibrahim N.I., A Al-Sulaiman F., Rahman S., Sami Yilbas B., Sahin A. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev., 2017;74:26–50.

44. Qureshi Z.A., Ali H., Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. International Journal of Heat and Mass Transfer, 2018;127:838–856.

45. Vadhera J., Sura A., Nandan G., Dwivedi G. Study of Phase Change materials and its domestic application. Materials Today Proceedings, 2018;5:3411–3417.

46. Lin Y., Jia Y., Raghuram Alva G., Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable and Sustainable Energy Reviews, 2018;82:2730–2742.

47. Dannemand M. Laboratory test of a cylindrical heat storage module with water and sodium acetate trihydrate. Energy Procedia, 2016;91:122–127.

48. Dong O., Kong W., Brinko Berg J., Furbo S. A novel eutectic phase-change material: CaCl2•6H2O +NH4Cl +KCl. Calphad, 2018;63:92–99.

49. Wang W.W., Wang L., He Y. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate. Applied Thermal Engineering, 2016;93:50–60.

50. Chaudhary F.G.G., Goia F., Fantucci S. Modelling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components. Energy & Building, 2018;174:54–67.

51. Koukou M.K.M., Michail V., Tachos N., Dogkas G., Lymperis K., Stathopoulos V. Experimental and computational investigation of a latent heat energy storage system with a staggered heat exchanger for various phase change materials. Thermal Science and Engineering Progress, 2018;7:87–98.

52. Bhatt V.D., Gohil K., Mishra A. Thermal Energy Storage Capacity of some Phase changing Materials and Ionic Liquids. International Journal of ChemTech Research., 2010;2(3):1771–1779.

53. Browne C., Boyd E., McCormack S. Investigation of the corrosive properties of phase change materials in contact with metals and plastic. Renewable Energy, 2017;108:555–568.

54. Judith C.G. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications High-Temperature Phase Change Materials (PCM). Applications, 2011; doi:10.2172/1024524

55. Liu M., Gomez J., Turhi C., Tay N., Saman W., Bruno F. Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for csp applications technologies. Solar Energy Mat. Sol. Cells, 2015;139:81–87.

56. Taylor R.A., Tsafnat N., Washer A. Experimental characterisation of sub-cooling in hydrated salt phase change materials. Applied Thermal Engineering, 2016;93:935–938.

57. Souayfane F., Fardoun F., Biwole P. Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build, 2016;129:396–431.

58. Zhang S., Wang Z. Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications. Renewable and Sustainable Energy Reviews, 2018;82:2319–2331.

59. Li T.X., Wu D., Wang R. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. International Journal of Heat and Mass Transfer, 2017;115:148–157.

60. Wei G., Wang G., Xu C., Ju X., Xing L., Du X., Yang Y. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 2018;81:1771–1786.

61. Khan Z., A Khan Z., Ghafoor A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag., 2016;115:132–158.

62. Meng Z.N., Zhang P. Experimental and numerical investigation of a tube–in–tank latent thermal energy storage unit using composite PCM. Appl. Energy, 2017;190:524–539.

63. Giro-Paloma J., Martinez M., Gabeza L., Fernandez A. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew. Sustain. Energy Rev., 2016;53:1059–1075.

64. Jamekhorshid A., Sadrameli S., Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium / A. Jamekhorshid [et al.]. Renew. Sustain. Energy Rev., 2014;31:531–542.

65. Hsua T., Chung C., Chung F., Chang C., Lu M., Chueh Y. Thermal hysteresis in phase-change materials: Encapsulated metal alloy core-shell microparticles. Nano Energy, 2018;51:563–570.

66. Trunin A.S., Morguniva O.E., Klimova M.V., Budkin A.V. Computer Modeling of the Eutectic Parameters for the Li,Na,Ca||F and K,Li,Sr||F Three-Component Systems. Russian Journal of Inorganic Chemistry, 2006;51(2):337–341.

67. Ignat'eva E.O., Dvoryanova E.M., Garkushin I.K., Kondratuk I.M. Prediction and experimental confirmation of characteristics of eutectic series of double componet systems K2NO4 – KG (G – F, Cl, Br, I; E – Cr, Mo, W (Prognozirovanie i eksperimental'noe podtverzhdenie kharakteristik evtektik ryadov dvukhkomponentnykh sistem K2NO4 – KG (G – F, Cl, Br, I; E – Cr, Mo, W). Vektor nauki TGU, 2011;16(2):31–35 (in Russ).

68. Morgunova O.E. A method of modeling the characteristics of eutectic alloys (Metod modelirovaniya evtekticheskikh kharakteristik mnogokomponentnykh splavov). Materialovedenie, 2014;202(1):50–56 (in Russ).

69. Babaev B.D. Principles of thermal storage and heating storage used (Printsipy teplovogo akkumulirovaniya i ispol'zuemye teploakkumuliruyushchie materialy). Teplofizika vysokikh temperatur, 2014;52(5):760–776 (in Russ).

70. Jiang Y., Sun Y., Bruno F., Li S. Eutectic Na2Co3-NaCl salt: A new phase change material for high temperature thermal storage. Solar Energy Materials and Solar Cells, 2016;152:155–60.

71. Raud R., Jacob R., Bruno F., Will G., Steinberg T. A critical review of eutectic salt property prediction for latent heat energy storage systems. Renewable and Sustainable Energy Reviews, 2017;70:936–944.

72. Kenisarin M., Mahkmov K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs. Solar Energy Materials Solar Cells, 2016;145:255–286.

73. Trausel F., Jong A., Cuypers R. A review on the properties of salt hydrates for thermochemical storage. Energy Procedia, 2014;48:447–452.

74. Fopah-Lelea A., Gaston Tamba J. A review on the use of SrBr2•6H2O as a potential material for low temperature energy storage systems and building applications. Solar Energy Materials Solar Cells, 2017;164:175–187.

75. Kenfack F., Bauer M. Innovative Phase Change Material (PCM) for heat storage for industrial applications. Energy Procedia, 2014;46:310 – 316.

76. Veerakumar C., Sreekumar A. Phase change material based cold thermal energy storage: Materials, techniques and applications – A review. International Journal of Refrigeration, 2016;67:271–289.

77. Safari A., Rahman S., Sulaiman F., Xu Y., Dong J. A review on supercooling of Phase Change Materials in thermal energy storage systems. Renewable and Sustainable Energy Reviews, 2017;70:905–91.

78. Zhou S., Zhou Y., Ling Z., Zhang Z., Fang X. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs. Applied Thermal Engineering, 2018;133:446–451.

79. Sandnes B., Rekstad J. Supercooling salt hydrates: stored enthalpy as a function of temperature. Solar Energy, 2006;80(5):616–625.

80. Karaipekli A., Bicer A., Sari A., Tyagi V. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes, Energy Convers Manag., 2017;134:373–381.

81. Tao Y.B., He Y. A review of phase change material and performance enhancement method for latent heat storage system. Renewable and Sustainale Energy Reviews, 2018;93:245–259.

82. Shah K.W. A review on enhancement of phase change materials – A nanomaterials perspective. Energy& Buildings, 2018;175:57–68.

83. Ibrahim N.I., A Al-Sulaiman F., Rahman S., Yilbas B., Sahin A. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew. Sustain. Energy Rev., 2017;74:26–50.

84. Castelloe J.M. Sample Size Computations and Power Analysis with the SAS System. Statistics and Data Analysis, 2000;25:8.


Review

For citations:


Morzhukhin A.M., Testov D.S., Morzhukhina S.V., Korokin V.Z. Selection Criteria and Thermophysical Properties of Low-Temperature Heat Storage Materials for Thermal Energy Storage Systems (Review). Alternative Energy and Ecology (ISJAEE). 2019;(22-27):92-106. (In Russ.) https://doi.org/10.15518/isjaee.2019.22-27.092-106

Views: 765


ISSN 1608-8298 (Print)