

Methane Assisted Solid Oxide Co-Electrolysis Process for Syngas Production
https://doi.org/10.15518/isjaee.2019.28-33.049-062
Abstract
About the Authors
Ya. WangChina
Yao Wang
Wuhan, Hubei, 430072, China
T. Liu
China
Tong Liu
Wuhan, Hubei, 430072, China;
Suzhou, Jiangsu 215123, China
L. Lei
United States
Libin Lei Department of Mechanical Engineering
Columbia, SC, 29208, USA
F. Chen
United States
Ph.D., Professor, Department of Mechanical Engineering
Columbia, SC, 29208, USA
References
1. Stoots C., Hartvigsen J., O'Brien J., Herring J. Syngas production via high temperature co-electrolysis of steam and carbon dioxide. J. Fuel Cell Sci. Technol., 2009;6:01101401–01101412.
2. Fu Q., Mabilat C., Zahid M., Brisse A., Gautier L. Syngas production via high temperature steam/CO2 coelectrolysis: an economic assessment. Energy Environ. Sci., 2010;3:1382–1397.
3. Graves C., Ebbesen S.D., Mogensen M., Lackner K.S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sust. Energy Rev., 2011;15:1–23.
4. Zhan Z., Kobsiriphat W., Wilson J.R., Pillai M., Kim I., Barnett S.A. Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy Fuel, 2009;23:3089–3096.
5. Jensen S.H., Larsen P.H., Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources. Int. J. Hydrogen Energy, 2007:32:3253–3257.
6. Li Y.H., Li P., Hu B.B., Xia C.R. A nanostructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas. J. Mater. Chem. A, 2016;4:9236–9243.
7. Yang C.H., Li J., Newkirk J., Baish V., Hu R.Z., Chen Y., Chen F.L. Co-electrolysis of H2O and CO2 in a solid oxide electrolysis cell with hierarchically structured porous electrodes. J. Mater. Chem. A, 2015;3:15913–15919.
8. Im H.N., Jeon S.Y., Lim D.K., Singh B., Choi M., Yoo Y.S., Song S.J., Steam/CO2 co-electrolysis performance of reversible solid oxide cell with La0.6Sr0.4Co0.2-Fe0.8O3-δ-Gd0.1Ce0.9O2-δ oxygen electrode. J. Electrochem. Soc., 2015;162:F54–F59.
9. Madsen B., Kobsiriphat W., Wang Y., Marks L., Barnett S. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes. J. Power Sources, 2007;166:64–67.
10. Martinez-Frias J., Pham A.-Q., Aceves S.M. A natural gas-assisted steam electrolyzer for highefficiency production of hydrogen. Int. J. Hydrogen Energy, 2003;28:483–490.
11. Luo Y., Shi Y., Li W., Ni M., Cai N. Elementary reaction modeling and experimental characterization of solid oxide fuel-assisted steam electrolysis cells. Int. J. Hydrogen Energy, 2014;39:10359–10373.
12. Ewan B.C., Adeniyi O.D. A demonstration of carbon-assisted water electrolysis. Energies, 2013:6:1657–1668.
13. Wang Y., Liu T., Fang S., Xiao G., Wang H., Chen F. A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process. J. Power Sources, 2015;277:261–267.
14. Lei L.B., Wang Y., Fang S.M., Ren C., Liu T., Chen F.L. Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide coelectrolysis. Appl. Energy, 2016;173:52–58.
15. Wang W., Gorte R.J., Vohs J.M. Analysis of the performance of the electrodes in a natural gas assisted steam electrolysis cell. Chem. Eng. Sci., 2008;63:765–769.
16. York A.P.E., Xiao T.C., Green M.L.H. Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal., 2003;22:345–358.
17. Chen X.B., Guan C.Z., Xiao G.P., Du X.L., Wang J.Q. Syngas production by high temperature steam/CO2 co-electrolysis using solid oxide electrolysis cells. Faraday Discuss, 2015;182:341–351.
18. Alzate-Restrepo V., Hill J.M. Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane. Appl. Catal. A Gen., 2008;342:49–55.
19. Girona K., Laurencin J., Fouletier J., LefebvreJoud F. Carbon deposition in CH4/CO2 operated SOFC: simulation and experimentation studies. J. Power Sources, 2012;210:381–391.
20. Wang W., Su C., Wu Y.Z., Ran R., Shao Z.P. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev., 2013;113:8104–8151.
21. Koh J.H., Kang B.S., Lim H.C., Yoo Y.S. Thermodynamic analysis of carbon deposition and electrochemical oxidation of methane for SOFC anodes. Electrochem. Solid State Lett., 2001;4:A12–A15.
22. Lin Y.B., Zhan Z.L., Liu J., Barnett S.A. Direct operation of solid oxide fuel cells with methane fuel. Solid State Ionics, 2005;176:1827–1835.
23. Horita T., Yamaji K., Kato T., Kishimoto H., Xiong Y.P., Sakai N., Brito M.E., Yokokawa H. Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization. J. Power Sources, 2005;145:133–138.
24. Xiao G., Liu Q., Zhao F., Zhang L., Xia C., Chen F. Sr2Fe1.5Mo0.5O6 as cathodes for intermediatetemperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3electrolyte. J. Electrochem. Soc., 2011;158:B455–B460.
25. Wang Y., Zhang H., Chen F., Xia C. Electrochemical characteristics of nanostructured PrBaCo2O5+x cathodes fabricated with ion impregnation process. J. Power Sources, 2012;203:34–41.
26. Su C., Wang W., Ran R., Shao Z.P., Tade M.O., Liu S.M. Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. J. Mater. Chem. A, 2013;1:5620–5627.
27. Xiao G.L., Chen F.L. Ni modified ceramic anodes for direct-methane solidoxide fuel cells. Electrochem. Commun., 2011;13:57–59.
28. Wang Y., Liu T., Fang S., Chen F. Syngas production on a symmetrical solid oxide H2O/CO2 coelectrolysis cell with Sr2Fe1.5Mo0.5O6–Sm0.2Ce0.8O1.9 electrodes. J. Power Sources, 2016;305:240–248.
29. Virkar A.V., Chen J., Tanner C.W., Kim J.W. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics, 2000;131:189–198.
30. Yoon K.J., Lee S.I., An H., Kim J., Son J.W., Lee J.H., Je H.J., Lee H.W., Kim B.K. Gas transport in hydrogen electrode of solid oxide regenerative fuel cells for power generation and hydrogen production. Int. J. Hydrogen Energy, 2014;39:3868–3878.
31. Nechache A., Cassir M., Ringuede A. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review. J. Power Sources, 2014;258:164–181.
32. Zhan Z., Zhao L. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J. Power Sources, 2010;195:7250–7254.
33. Stoots C., O'Brien J., Hartvigsen J. Results of recent high temperature co-electrolysis studies at the Idaho national laboratory. Int. J. Hydrogen Energy, 2009;34:4208–4215.
Review
For citations:
Wang Ya., Liu T., Lei L., Chen F. Methane Assisted Solid Oxide Co-Electrolysis Process for Syngas Production. Alternative Energy and Ecology (ISJAEE). 2019;(28-33):49-62. (In Russ.) https://doi.org/10.15518/isjaee.2019.28-33.049-062