Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Methane Assisted Solid Oxide Co-Electrolysis Process for Syngas Production

https://doi.org/10.15518/isjaee.2019.28-33.049-062

Abstract

In this study, methane assisted high temperature steam/CO2 co-electrolysis process is performed on symmetrical cells with a configuration of SFM-SDC/LSGM/SFM-SDC to produce high-quality synthesis gas (syngas, a mixture of H2 and CO). The Nernst potential has been evaluated for solid oxide cells in the methane assisted mode, which is reduced by nearly one order of magnitude through substituting the anode atmosphere from air to methane. The open circuit voltage (OCV) is –0.06 V at 800 °C, and an electrolysis current density of –242 mAcm–2 has been obtained at 850 °C and 0.3 V. Effects of operating conditions on products composition have been revealed by using the chemical equilibrium co-electrolysis model and HSC software. High-quality syngas with high conversion rate of CO2 to CO as well as ideal H2/CO molar ratio of 2 could be achieved in both electrode sides by adjusting appropriate operating conditions. The short-term cell voltage is slightly fluctuant less than 0.05 V at 850 °C and –120 mAcm–2 , in which condition carbon deposition has been observed in the SFM-SDC anode due to the low O2– /CH4 ratio.

About the Authors

Ya. Wang
School of Power and Mechanical Engineering, Wuhan University
China

Yao Wang

Wuhan, Hubei, 430072, China



T. Liu
School of Power and Mechanical Engineering, Wuhan University; Suzhou Institute of Wuhan University
China

Tong Liu

Wuhan, Hubei, 430072, China;
Suzhou, Jiangsu 215123, China



L. Lei
University of South Carolina
United States

Libin Lei Department of Mechanical Engineering

Columbia, SC, 29208, USA



F. Chen
University of South Carolina
United States

Ph.D., Professor, Department of Mechanical Engineering

Columbia, SC, 29208, USA



References

1. Stoots C., Hartvigsen J., O'Brien J., Herring J. Syngas production via high temperature co-electrolysis of steam and carbon dioxide. J. Fuel Cell Sci. Technol., 2009;6:01101401–01101412.

2. Fu Q., Mabilat C., Zahid M., Brisse A., Gautier L. Syngas production via high temperature steam/CO2 coelectrolysis: an economic assessment. Energy Environ. Sci., 2010;3:1382–1397.

3. Graves C., Ebbesen S.D., Mogensen M., Lackner K.S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sust. Energy Rev., 2011;15:1–23.

4. Zhan Z., Kobsiriphat W., Wilson J.R., Pillai M., Kim I., Barnett S.A. Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy Fuel, 2009;23:3089–3096.

5. Jensen S.H., Larsen P.H., Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources. Int. J. Hydrogen Energy, 2007:32:3253–3257.

6. Li Y.H., Li P., Hu B.B., Xia C.R. A nanostructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas. J. Mater. Chem. A, 2016;4:9236–9243.

7. Yang C.H., Li J., Newkirk J., Baish V., Hu R.Z., Chen Y., Chen F.L. Co-electrolysis of H2O and CO2 in a solid oxide electrolysis cell with hierarchically structured porous electrodes. J. Mater. Chem. A, 2015;3:15913–15919.

8. Im H.N., Jeon S.Y., Lim D.K., Singh B., Choi M., Yoo Y.S., Song S.J., Steam/CO2 co-electrolysis performance of reversible solid oxide cell with La0.6Sr0.4Co0.2-Fe0.8O3-δ-Gd0.1Ce0.9O2-δ oxygen electrode. J. Electrochem. Soc., 2015;162:F54–F59.

9. Madsen B., Kobsiriphat W., Wang Y., Marks L., Barnett S. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes. J. Power Sources, 2007;166:64–67.

10. Martinez-Frias J., Pham A.-Q., Aceves S.M. A natural gas-assisted steam electrolyzer for highefficiency production of hydrogen. Int. J. Hydrogen Energy, 2003;28:483–490.

11. Luo Y., Shi Y., Li W., Ni M., Cai N. Elementary reaction modeling and experimental characterization of solid oxide fuel-assisted steam electrolysis cells. Int. J. Hydrogen Energy, 2014;39:10359–10373.

12. Ewan B.C., Adeniyi O.D. A demonstration of carbon-assisted water electrolysis. Energies, 2013:6:1657–1668.

13. Wang Y., Liu T., Fang S., Xiao G., Wang H., Chen F. A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process. J. Power Sources, 2015;277:261–267.

14. Lei L.B., Wang Y., Fang S.M., Ren C., Liu T., Chen F.L. Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide coelectrolysis. Appl. Energy, 2016;173:52–58.

15. Wang W., Gorte R.J., Vohs J.M. Analysis of the performance of the electrodes in a natural gas assisted steam electrolysis cell. Chem. Eng. Sci., 2008;63:765–769.

16. York A.P.E., Xiao T.C., Green M.L.H. Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal., 2003;22:345–358.

17. Chen X.B., Guan C.Z., Xiao G.P., Du X.L., Wang J.Q. Syngas production by high temperature steam/CO2 co-electrolysis using solid oxide electrolysis cells. Faraday Discuss, 2015;182:341–351.

18. Alzate-Restrepo V., Hill J.M. Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane. Appl. Catal. A Gen., 2008;342:49–55.

19. Girona K., Laurencin J., Fouletier J., LefebvreJoud F. Carbon deposition in CH4/CO2 operated SOFC: simulation and experimentation studies. J. Power Sources, 2012;210:381–391.

20. Wang W., Su C., Wu Y.Z., Ran R., Shao Z.P. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev., 2013;113:8104–8151.

21. Koh J.H., Kang B.S., Lim H.C., Yoo Y.S. Thermodynamic analysis of carbon deposition and electrochemical oxidation of methane for SOFC anodes. Electrochem. Solid State Lett., 2001;4:A12–A15.

22. Lin Y.B., Zhan Z.L., Liu J., Barnett S.A. Direct operation of solid oxide fuel cells with methane fuel. Solid State Ionics, 2005;176:1827–1835.

23. Horita T., Yamaji K., Kato T., Kishimoto H., Xiong Y.P., Sakai N., Brito M.E., Yokokawa H. Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization. J. Power Sources, 2005;145:133–138.

24. Xiao G., Liu Q., Zhao F., Zhang L., Xia C., Chen F. Sr2Fe1.5Mo0.5O6 as cathodes for intermediatetemperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3electrolyte. J. Electrochem. Soc., 2011;158:B455–B460.

25. Wang Y., Zhang H., Chen F., Xia C. Electrochemical characteristics of nanostructured PrBaCo2O5+x cathodes fabricated with ion impregnation process. J. Power Sources, 2012;203:34–41.

26. Su C., Wang W., Ran R., Shao Z.P., Tade M.O., Liu S.M. Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. J. Mater. Chem. A, 2013;1:5620–5627.

27. Xiao G.L., Chen F.L. Ni modified ceramic anodes for direct-methane solidoxide fuel cells. Electrochem. Commun., 2011;13:57–59.

28. Wang Y., Liu T., Fang S., Chen F. Syngas production on a symmetrical solid oxide H2O/CO2 coelectrolysis cell with Sr2Fe1.5Mo0.5O6–Sm0.2Ce0.8O1.9 electrodes. J. Power Sources, 2016;305:240–248.

29. Virkar A.V., Chen J., Tanner C.W., Kim J.W. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics, 2000;131:189–198.

30. Yoon K.J., Lee S.I., An H., Kim J., Son J.W., Lee J.H., Je H.J., Lee H.W., Kim B.K. Gas transport in hydrogen electrode of solid oxide regenerative fuel cells for power generation and hydrogen production. Int. J. Hydrogen Energy, 2014;39:3868–3878.

31. Nechache A., Cassir M., Ringuede A. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review. J. Power Sources, 2014;258:164–181.

32. Zhan Z., Zhao L. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J. Power Sources, 2010;195:7250–7254.

33. Stoots C., O'Brien J., Hartvigsen J. Results of recent high temperature co-electrolysis studies at the Idaho national laboratory. Int. J. Hydrogen Energy, 2009;34:4208–4215.


Review

For citations:


Wang Ya., Liu T., Lei L., Chen F. Methane Assisted Solid Oxide Co-Electrolysis Process for Syngas Production. Alternative Energy and Ecology (ISJAEE). 2019;(28-33):49-62. (In Russ.) https://doi.org/10.15518/isjaee.2019.28-33.049-062

Views: 493


ISSN 1608-8298 (Print)