Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

TRANSPORT АND MAGNETIC PHENOMENA IN NANOHETEROGENEOUS STRUCTURES

https://doi.org/10.15518/isjaee.2015.20.006

Abstract

A number of interesting effects such as giant magnetoresistance, the anomalous Hall effect and some others are observed in nanogranulated ferromagnet-semiconductor composites and multilayer-structures based on the composites. The nature of the effects is not fully investigated up to now. In some cases there is the discovery of new effects. For example, in granular superparamagnetic / semiconductor (metal) multilayer systems a new physical phenomenon (the ordering of the granules magnetic moments) was experimentally observed in a certain range of thickness of the semiconductor layers. The physical nature of the phenomenon has no theoretical explanation. Besides that these multilayer systems exhibit a very promising for practical application magnetic properties in high-frequency region. The odd magnetic thermoelectric power is expected to appearance in the laminate ferromagnetic-piezoelectric composite. This odd effect is important in the development of magnetic field sensors, which can not only measure the magnetic (or electric) field but also can measure its polarity.

About the Authors

A. B. Granovsky
Lomonosov Moscow State University
Russian Federation
DSc, professor of the Magnetism department, Lomonosov Moscow State University


Yu. E. Kalinin
Voronezh State Technical University
Russian Federation
DSc, prof., Head of the Solid State Physics department, Voronezh State Technical University


A. V. Sitnikov
Voronezh State Technical University
Russian Federation
DSc, prof. of the Solid State Physics department, Voronezh State Technical University


O. V. Stognei
Voronezh State Technical University
Russian Federation
DSc, prof. of the Solid State Physics department, Voronezh State Technical University


References

1. Neugebauer C.A. Resistivity of Cermet Films Containing Oxides of Silicon. Thin Solid Films, 1970, vol. 6, pp. 443–447 (in Eng.).

2. Gittleman J.L., Goldstain Y., Bozowski S. Magnetic properties of Granular Nikel Films. Physical Review B, 1972, vol. B5, pp. 3609–3621 (in Eng.).

3. Abeles B., Sheng P., Coutts M.D., Arie Y. Structural and electrical properties of granular metal films. Advances in Physics, 1975, vol. 24, pp. 407–461 (in Eng.).

4. Èfros A.L., Shklovsky B.I. Teoriâ protekaniâ i provodimost’ sil’no neodnorodnyh sred. UFN, 1974, vol. 117, no. 3, pp. 2–14 (in Russ.).

5. Efros A.L., Shklovski B.I. Conduction of nanostructured metall-insulator. Phys. Stat. Solid., vol. 1976, no. 76, pp. 475–490 (in Eng.).

6. Beloborodov I.S., Lopatin A.V., Vinokur V.M., Efetov K.B. Granular electronic systems. Rev. Mod. Phys., 2007, vol. 79, no 2, pp. 469–520 (in Eng.).

7. Zhanhu Guo, a_Sung Park, Thomas Hahn H. Giant magnetoresistance behavior of an iron/carbonized polyu-rethane nanocomposite. Applied Physics Letters, 2007, vol. 90, pp. 053111–053113 (in Eng.).

8. Meilikhov E.Z., Raquet B., Rakoto H. Magnetore-sistance of a ferromagnetic metal nano-composite with nonspherical granules. Journal of Experimental and Theoretical Physics, 2001, vol. 92, no. 5, pp. 816–819 (in Eng.).

9. Kasiuk J.V., Fedotova J.A. et al. Correlation be-tween local Fe states and magnetoresistivi-ty in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. Journal of Alloys and Compounds, 2014, vol. 586, pp. S432–S435 (in Eng.).

10. Fujimori H., Mitani S., Ohnuma S. Tunnel-type GMR in metal-nonmetal granular alloy thin films. Mater. Sci. Eng., 1995, vol. B31, pp. 219–223 (in Eng.).

11. Meier H., Kharitonov M.Y., Efetov K.B. Anoma-lous hall effect in granular ferromagnetic metals and effects of weak localization. Physical Review B: Con-densed Matter and Materials Physics, 2009, vol. 80, no. 4, pp. 045122–045132 (in Eng.).

12. Granovskii A.B., Gan’shina et. al Magnetorefrac-tive effect in nanostructures, manganites and magnetophotonic crystals based on these materials. J. Comm. Tech. and Electronics, 2007, vol. 52, pp. 1065–1071 (in Eng.).

13. Granovsky A.B., Bykov I., Gan’shina E.A., Gush-chin V.S., Kozlov A., Yurasov A.N., Kalinin Yu.E. Mag-nitorefraktivnyj èffekt v magnitnyh nanokompozitah. ŽÈTF, 2003, vol. 123, issue 6, pp. 1256–1267 (in Russ.).

14. Buravtsova V.E., Gan’shina E.A., Ivanova O.S., Kalinin Yu.E., Kirov S.A., Pkhongkhirun S., Sitnikov A.V. Evolution of magneto-optical properties of (Co)x(LiNbO3)100-x nanocomposites with a change in the oxygen pressure during their preparation. Bulletin of the Russian Academy of Sciences: Physics, 2007, vol. 71, pp. 1539–1540 (in Eng.).

15. Polyakov V.V., Polyakova K.P., Seredkin V.A., Patrin G.S. Magneto-Optical Kerr Effect Enhancement in Co-Ti-O Nanocomposite Films. Solid State Phenomena, 2012, vol. 190, pp. 506–509 (in Eng.).

16. Beloborodov I.S., Lopatin A.V., Vinokur V.M. Coulomb effects and hopping transport in granular Met-als. Phys. Rev. B., 2005, vol. 72, pp. 125121–125141. (in Eng.).

17. Boltaev L.P., Pudonin F.A. Vliânie slabogo èlek-tričeskogo polâ na provodimost’ v tonkih metalličeskih plenkah. ŽÈTF, 2006, vol. 130, issue 3(9), pp. 500–505 (in Russ.).

18. Abeles B., Cohen R.W., Cullen G.W. Enhancement of Superconductivity in Metal Films. Phys. Rev. Lett., 1966, vol. 17, pp. 632–634 (in Eng.).

19. Sheng P., Abeles B., Arie Y. Hopping conductivity in granular Metals. Phys. Rev. Lett., 1973, vol. 31, no.1, pp. 44–47 (in Eng.).

20. DongLiang Peng, JunBao Wang, LaiSen Wang, XiaoLong Liu, ZhenWei Wang, YuanZhi Chen. Electron transport properties of magnetic granular films. Science China Physics, Mechanics and Astronomy, 2013, vol. 56, no.1, pp. 15–28 (in Eng.).

21. Timopheev A.A., Ryabchenko S.M., Kalita V.M., Lozenko A.F., Trotsenko P.A., Stognei O.V., Sitnikov A.V. Growth-induced perpendicular anisotropy of grains in Co-Al-O nanogranular ferromagnetic films. Physics of the Solid State, 2011, vol. 53, no. 3, pp. 494–503 (in Eng.).

22. Lin C.-H., Wu G.Y. Hopping conduction in gran-ular metals. Physica B, 2000, vol. B 279, pp. 341–346 (in Eng.).

23. Beloborodov I.S., Glatz A., Vinokur V.M. Electron transport in nanogranular ferromagnets. Phys. Rev. Lett., 2007, vol. 99, pp. 066602–066606 (in Eng.).

24. Beloborodov I.S., Lopatin A.V., Vinok V.M. Cou-lomb effects and hopping transport in granular metals. Phys. Rev. B, 2005, vol. 72, pp. 125121–125125 (in Eng.).

25. Gridnev S.A., Gorshkov A.G., Sitnikov A.V., Ka-linin Yu.E. Charge transfer and dielectric properties of granular nanocomposites Cox(LiNbO3)100-x. Physics of the Solid State, 2006, vol. 48, pp. 1186–1188 (in Eng.).

26. Zolotukhin I.V., Kalinin Yu.E., Ponomarenko A.T., Shevchenko V.G., Sitnikov A.V., Stognei O.V., Figovsky O. Metal-dielectric nanocomposites with amorphous structure. J. Nano-structured Polymers and Nanocomposites, 2006, vol. 2, no. 1, pp. 23–34 (in Eng.).

27. Doncova N.A., Kalinin Yu.E., Kashirin M.A., Sitnikov A.V. Èlektričeskie i magnitorezistivnye svojstva nanogranulirovannyh plenok CoFeB-CaF2. Izvestiâ RAN. Seriâ fizičeskaâ, 2013, vol. 77, no. 10, pp. 1537–1540 (in Eng.).

28. Lucev L.V., Kalinin Yu.E., Sitnikov A.V., Stognei O.V. Èlektronnyj transport v magnitnom pole v granulirovannyh plenkah amorfnoj dvuokisi kremniâ s ferromagnitnymi nanočasticami. FTT, 2002, vol. 44, no. 10, pp. 1802–1810 (in Russ.).

29. Kalinin Yu.E., Remizov A.N., Sitnikov A.V. Èlektričeskie svojstva amorfnyh na-nokompozitov (Co45Fe45Zr10)x(Al2O3)100–x. FTT, 2004, vol. 46, issue 11, pp. 2076–2082 (in Russ.).

30. Zolotukhin I.V., Kalinin Yu.E., Ponomarenko A.T. et al. Metal-dielectric nanocomposites with amorphous structure. J. Nanostructured Polymers and Nano-composites, 2006, vol. 2, no. 1, pp. 23–34 (in Eng.).

31. Kalinin Yu.E., Sitnikov A.V., Zvezdin A.K. et al. Èlektričeskie svojstva amorfnyh granulirovannyh nanokompozitov (Co45Fe45Zr10)h[Pb0,81Sr0,04(Na0,5Bi0,5)0,15(Zr0,575Ti0,425)O3]1–x. Perspektivnye materialy, 2007, no. 3, pp. 41–48 (in Russ.).

32. Kalinin Yu.E., Remizov A.N., Sitnikov A.V., Samcova N.P. Struktura i èlektriče-skie svojstva amorfnyh nanokompozitov (Co45Fe45Zr10)x(SiO2)100–x. Perspektivnye materialy, 2003, no. 3, pp. 62–67 (in Russ.).

33. Kalinin Yu.E., Sitnikov A.V., Stognei O.V. Fizičeskie svojstva nanokompozitov metall–dièlektrik s amorfnoj strukturoj. International Scientific Journal “Al’ternativnaâ ènergetika i èkologiâ” (ISJAEE), 2007, no. 10, pp. 9–21 (in Russ.).

34. Kalinin Yu.E., Korolev K.G., Sitnikov A.V. Èlektričeskie svojstva mnogosloek metall-poluprovodnik s amorfnoj strukturoj. Pis’ma v ŽTF, 2006, vol. 32, issue 6, pp. 61–67 (in Russ.).

35. Ishakov R.S., Komogorcev S.V., Denisova E.A., Kalinin Yu.E., Sitnikov A.V. Fraktal’naâ magnitnaâ mikrostruktura v plenkah nanokompozitov (Co41Fe39B20)x(SiO2)1–x. Pis’ma v ŽÈTF, 2007, vol. 86, issue 7, pp. 534–538 (in Russ.).

36. Ohnuma S.H., Hono K., Onoder H., Ohnuma S., Fujimori H., Pedersen J.S. Microstructures and magnetic properties of C-Al-O granular thin films. J. Appl. Phys., 2000, vol. 87, no. 2, pp. 817–823 (in Eng.).

37. Ohnuma S.H., Fujimori H., Mitani S., Masumoto T. High frequency magnetic properties in metal-nonmetal granular films. J. Appl. Phys., 1996, vol. 79, pp. 5130–5135 (in Eng.).

38. Morikawa T., Suzuki M., Taga Y. Soft-magnetic properties of Co-Cr-O granular films. J. Appl. Phys., 1998, vol. 83, pp. 6664–6666 (in Eng.).

39. Sasaki Y., Morita S., Hatanai T., Makino A., Sato T., Yamasawa K. High–frequency soft magnetic proper-ties of nanocrystalline Fe-(Co)-Hf-O films with high electrical resistivity and their applications to micro DC-DC converter. NanoStructured Mat., 1997, vol. 8, pp. 1025–1029 (in Eng.).

40. Li Liangliang, Crawford Ankur M., Wang Shan X., Marshall Ann F., Mao Ming, Schneider Thomas, Bubber Randhir. Soft magnetic granular material Co-Fe-Hf-O for micromagnetic device applications. J. Appl. Phys., 2005, vol. 97, no. 10, pp. 907–910 (in Eng.).

41. Liangliang Li, Dok Won Lee, Ming Mao, Thomas Schneider, Randhir Bubber, Kyu-Pyung Hwang, Yongki Min, Shan X. Wang. High–frequency responses of granular CoFeHfO and amorphous CoZrTa magnetic materials. J. Appl. Phys., 2007, vol. 101, pp. 123912 –123916 (in Eng.).

42. Guangduo Lu, Huaiwu Zhang, John Q. Xiao, Feiming Bai, Xiaoli Tang, Yuanxun Li, Zhiyong Zhong. Influence of sputtering power on the high frequency properties of nanogranular FeCoHfO thin films. J. Appl. Phys., 2011, vol. 109, pp. 07A327–07A330 (in Eng.).

43. Coonley K.D., Mehas G.J., Sullivan C.R., Gibson U.J. Evaporatively deposited Co-MgF2 granular materials for thin–film inductors: M.S. thesis, Dartmouth College, 1999 (in Eng.).

44. Ohnuma S.H., Fujimori H., Masumoto T., Xiong X.Y., Ping D.H., Hono K. FeCo-Zr-O na-nogranular soft-magnetic thin films with a high magnetic flux density. Appl. Phys. Lett., 2003, vol. 82, no. 6, pp. 946–948 (in Eng.).

45. Shihui Ge, Yang Xiaolin, Kim Kwang Youn, Xi Li, Kou Xiaoming, Yao Dongsheng, Li Binsheng, Wang Xinwei Study on mechanism of soft magnetic properties for high-frequency ap-plication in Ni75Fe25-SiO2 granular films. Phys. Stat. Sol. A, 2005, vol. 202, vol. 10, pp. 2021–2027 (in Eng.).

46. Kotov L.N., Turkov V.K., Vlasov V.S., Lasek M.P., Kalinin Yu.E., Sitnikov A.V. Conductive, magnetic and structural properties of multilayer films. IOP Conf. Series: Materials Science and Engineering, 2013, vol. 47, pp. 012027 (1–4) (in Eng.).

47. Kanai S., Gajek M., Worledge D.C., Matsukura F., Oh H. Electric field-induced ferro-magnetic resonance in a CoFeB/MgO magnetic tunnel junction under dc bias voltages. Appl. Phys. Lett., 2014, vol. 105, pp. 242409–242413 (in Eng.).

48. Sankey J.C., Braganca P.M., Garcia A.G.F., Kri-vorotov I.N., Buhrman R.A., Ralph D.C. Spin-Transfer-Driven Ferromagnetic Resonance of Individual Nano-magnets. Phys. Rev. Lett., 2006, vol. 96, pp. 227601–227608 (in Eng.).

49. Wei Y., Brucas R., Gunnarsson K., Celinski Z., Svedlindh P. Positive correlation between coercivity and ferromagnetic resonance extrinsic linewidth in Fe-CoV/SiO2 films. Appl. Phys. Lett., 2014, vol. 104, pp. 072404 –0724011 (in Eng.).

50. Lianwen Deng, Zekun Feng, Jianjun Jiang, Huahui He. Percolation and microwave characteristics of CoFeB-SiO2 nano-granular films. J. Magn. and Magn. Mater., 2007, vol. 309, pp. 285–289 (in Eng.).

51. Yanga F.F., Yana S.S., Yub M.X. et al. Enhanced high–frequency electromagetic properties of FeCoB–SiO2/SiO2 multilayered granular films. Physica B: Con-densed Matter., 2012, vol. 407, pp. 1108–1113 (in Eng.).

52. Buznikov N.A., Iakubov I.T., Rakhmanov A.L., Sboychakov A.O. High-frequency magnetic permeability of nanocomposite film. J. Magn. and Magn. Mater., 2005, vol. 293, pp. 938–946 (in Eng.).

53. Menéndez E., Dias T., Geshev J., Lopez-Barbera J.F., Nogués J., Steitz R., Kirby B.J., Borchers J.A., Pereira L.M.C., Vantomme A., Temst K. Interdependence between training and magnetization reversal in granular Co-CoO exchange bias systems. Phys. Rev. B, 2014, vol. 89, pp. 144407–144414 (in Eng.).

54. Iakubov I.T., Lagarkov A.N., Osipov A.V., Mak-lakov S.A., Rozanov K.N., Ryzhikov I.A., Starostenko S.N. A laminate of ferromagnetic films with high effective permeability at high frequencies. AIP Advances, 2014, vol. 4, pp. 107143–107149 (in Eng.).

55. Haiwen Xi, Kai–Zhong Gao, Yiming Shi and Song Xue. Precessional dynamics of single-domain magnetic nanoparticles driven by small ac magnetic fields. J. Phys. D: Appl. Phys., 2006, vol. 39, pp. 4746–4752 (in Eng.).

56. Wu L.Z., Ding J., Jiang H.B., Chen L.F., Ong C.K. Particle size influence to the micro-wave properties of iron based magnetic particulate composites. J. Magn. and Magn. Mat., 2005, vol. 285, pp. 233–239 (in Eng.).

57. Neige J., Lepetit T., et al. Evidence of an embed-ded vortex translation mode in flake-shaped ferromag-netic particle composites. Appl. Phys. Lett., 2013, vol. 102, pp. 242401–242407 (in Eng.).

58. Nguyen N. Phuoc, Ong C.K. Thermal stability of high frequency properties of gradient-composition sputtered FeCoHf films with and without stripe domains. J. Appl. Phys., 2013, vol. 114, pp. 023901 (in Eng.).

59. Buravtsova V.E., Ganshina E.A., Kirov S.A., Ka-linin Yu.E., Sitnikov A.V. Magnetooptical Properties of Layer-by-Layer Deposited Ferromagnet-Dielectric Nanocomposites. Materials Sciences and Applications, 2013, vol. 4, pp. 16–23 (in Eng.).

60. Burgler D.E., Buchmeier M., Cramm S., Eisebitt S., Gareev R.R., Grunberg P., Jia1 C.L., Pohlmann L.L., Schreiber R., Siegel M., Qin Y.L., Zimina A. Exchange coupling of ferromagnetic films across metallic and sem-iconducting interlayers. J. Phys.: Condens. Matter., 2003, vol. 15, pp. 443–450 (in Eng.).

61. Vas’kovsky V.O., Patrin G.S., Velikanov D.A., Svalov A.V., Savin P.A., Yuvshchenko A.A., Shchegoleva N.N. Magnetizm sloev Co v sostave mnog-oslojnyh plenok Co/Si, FTT, 2007, vol. 49, issue 2, pp. 291–296 (in Russ.).

62. Domashevskaya È.P., Chernyshev A.V., Sitnikov A.V. et al. XANES–issledovaniâ mežatomnyh vzai-modejstvij v mnogoslojnyh nanostrukturah (Co45Fe45Zr10/a–Si)40 i (Co45Fe45Zr10/SiO2)32. FTT, 2013, vol. 55, pp. 1202–1210 (in Russ.).

63. Kotov L.N., Vlasov V.S., Turkov V.K., Kalinin Y.E., Sitnikov A.V. Influence of Annealing on Magnetic, Relaxation and Structural Properties of Composite and Multilayer Films. Journal of Nanoscience and Nanotech-nology, 2012, vol. 12, no. 2, pp. 1696–1699 (in Eng.).

64. Guo Y., Yu X.W., Li Y.X. Spin filtering and spin-polarization reversal in multilayered fer-romagnetic metal/semiconductor heterostructures. J. Appl. Phys., 2005, vol. 98, pp. 053902–053907 (in Eng.).

65. Aronzon B.A., Granovsky A.B., Davydov A.B., Dokukin M.E., Kalinin Yu.E., Nikolaev S.N., Ryl’kov V.V., Sitnikov A.V., Tugushev V.V. Planarnyj èffekt Holla i anizotropnoe magnitosoprotivlenie v sloistyh strukturah Co0.45Fe0.45Zr0.1/α–Si s perkolâcionnoj provodimost’û. ŽÈTF, 2006, vol. 130, issue 1(7), pp. 127–136 (in Russ.).

66. Szuszkiewicz W., Fronc K., Baran M., Szymczak R., Ott F., Hennion B., Dynowska E., Paszkowicz W., Pelka J.B., Zuberek R., Jouanne M., Morhange J.F. Interlayer Magnetic Coupling for Fe/Si Multilayers. J. Su-perconductivity: Inc. Nov. Magn, 2003, vol. 16, no. 1, pp. 1152–1158 (in Eng.).

67. Kotov L.N., Vlasov V.S., Turkov V.K., Kalinin Y.E., Sitnikov A.V. Influence of Annealing on Magnetic, Relaxation and Structural Properties of Composite and Multilayer Films. Journal of Nanoscience and Nanotech-nology, 2012, vol. 12, no. 2, pp. 1696–1699 (in Eng.).

68. Dunec O.V., Kalinin Yu.E., Kashirin M.A., Sitnikov A.V. Èlektričeskie i magnitnye svojstva mul’tislojnyh struktur na osnove kompozita (Co40Fe40B20)33.9(SiO2)66.1]. Žurnal tehničeskoj fiziki, 2013, vol. 83, pp. 114–120 (in Russ.).

69. Ivanov A.V., Kalinin Yu.E., Nechaev V.N., Sitnikov A.V. Èlektričeskie i magnitnye svojstva mul’tislojnyh struktur [(CoFeZr)x(Al2O3)1–x/(alpha–SiH)]n. FTT, 2009, vol. 60, issue 12, pp. 2331–2336 (in Russ.).

70. Komogortsev S.V., Denisova E.A., Sitnikov A.V. et al. Multilayer nanogranular films (Co40Fe40B20)50(SiO2)50/a-Si:H and (Co40Fe40B20)50(SiO2)50/SiO2: Magnetic properties. Journal of Applied Physics, 2013, vol. 113, pp. 17C105–170109 (in Eng.).

71. Sitnikov A.V. Èlektričeskie i magnitnye svojstva nanogeterogennyh sistem metall-dièlektrik: Dissertation of DSc (physics and mathematics). Voronezh: VGTU, 2009, 318 p.

72. Dyad’kina E.A., Vorob’ev A.A., Ukleev V.A., Lott D., Sitnikov A.V., Kalinin Yu.E., Gerashchenko O.V., Grigor’ev S.V. Morfologiâ, magnitnye i provodâŝie svojstva geterogennyh sloistyh magnitnyh struktur [( Co45Fe45Zr10)35(Al2O3)65/a– Si:H]36. ŽÈTF, 2014, vol. 145, issue 3, pp. 472–480 (in Russ.).

73. Chekrygina Ju., Devizenko A., Kalinin Yu., Kirov S., Lebedeva E., Shipkova I., Sitnikov A., Syr’ev N., Vyzulin S. Magnetic and Magnetoresonance Properties of Multilayered Systems Based on (CoFeB)x-(SiO2)100–x Composite Layers. Solid State Phenomena, 2014, vol. 215, pp. 272–277 (in Eng.).

74. Gan’shina E.A., Perov N.S., Phonghirun S., Mi-gunov V.E., Kalinin Yu.E., Sitnikov A.V. Usilenie mag-nitooptičeskogo otklika v mnogoslojnoj sisteme nanokompozit-gidrogenizirovannyj amorfnyj kremnij. Izvestiâ RAN. Ser. Fizičeskaâ, 2008, no. 10, pp. 1455–1457 (in Russ.).

75. Vyzulin S.A., Gorobinskij A.V., Kalinin Yu.E., Lebedeva E.V., Sitnikov A.V., Syr’ev N.E., Trofimenko I.T., Shipkova I.G. Название. Kompleksnyj analiz statičeskih i dinamičeskih magnitnyh harakteristik mulʹtislojnyh nanostruktur CoFeZr/α-Si. Vestnik MGU, Ser. 3. Fizika, Astronomiâ, 2009, no. 2, pp. 32–36 (in Russ.).

76. Byzylin C.A., Gopobinsky A.B., Kalinin Yu.E., Lebedeva E.B., Sitnikov A.B., Cyp’ev H.E., Tpofimenko I.T., Shipkova I.G. FMR, magnitnye i rezistivnye svojstva mul’tislojnyh nanostruktur (Co45Fe45Zr10)x(Al2O3)1–x/Si. Izvestiâ PAH. Sep. Fizičeskaâ, 2010, vol. 74, no. 10, pp. 1441–1443 (in Russ.).

77. Byzylin C.A., Gopobinsky A.B., Kalinin Yu.E., Lebedeva E.B., Sitnikov A.B., Cyp’ev H.E., Tpofimenko I.T., Chekrygina Yu.I., Shipkova I.G. FMR, magnitnye i rezistivnye svojstva nanostruktur s granulirovannymi magnitnymi sloâmi. Nanotehnika, 2010, no. 3(23), pp. 16–21 (in Russ.).

78. Vashuk M.V., Gan’shina E.A., Phonghirun S., Tulsky I.I., Shcherbak P.N., Kalinin Yu.E. Optical and magneto-optical properties of {Co0.45Fe0.45Zr0.1/a–Si}n multilayers. Non-crystall. Solids, 2007, vol. 353, pp. 962–964 (in Eng.).

79. Glatz A., Beloborodov I.S. Thermoelectric and Seebeck coefficients of granular metals. Phys. Rev. B, 2009, vol. 79, pp. 235403 (in Eng.).

80. Glatz A., Beloborodov I.S. Thermoelectric prop-erties of granular metals. Phys. Rev. B, 2009, vol. 79, pp. 041404(R)-041408(R) (in Eng.).

81. Tsyplyatyev O., Kashuba O., Fal’ko V.I. Thermally excited spin current and giant magneto-thermopower in metals with embedded ferromagnetic nanoclusters. Phys. Rev. B, 2006, vol. 74, pp. 132403–132406 (in Eng.).

82. Dubi Y., M. Di Ventra. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys., 2011, vol. 83, pp. 131–155 (in Eng.).

83. Wang K., Wang L., Petrovic C. Large magne-tothermopower effect in Dirac materials (Sr/Ca)MnBi2. Appl. Phys. Lett., 2012, vol. 100, pp. 112111–112116 (in Eng.).

84. Tsyplyatyev O., Kashuba O., Fal’ko V. Giant magnetothermopower and magnetoresistance in metals with embedded ferromagnetic nanoclusters. J. Appl. Phys., 2007, vol. 101, pp. 014324–014329 (in Eng.).

85. López-Monís C., Matos-Abiague A., Fabian J. Tunneling magnetothermopower in magnetic tunnel junctions. Phys. Rev. B, 2014, vol. 89, pp. 054419–054422 (in Eng.).

86. Nagaosa N., Sinova J., Onoda S. et al. Anomalous Hall effect. Rev. Mod. Phys., 2010, vol. 82, pp. 1539–1579 (in Eng.).

87. Mikhailovsky Yu.O., Metus D.E., Kazakov A.P. et al. Anomalous Hall effect in (Co41Fe39B20)x(Al–O)100–x. JETP Lett., 2013, vol. 97, pp. 473–479 (in Eng.).

88. Hoffman A. Spin Hall Effect. IEEE transactions on magnetics, 2013, vol. 49, no. 10, p. 5172 (in Eng.).

89. Rashba E.I. Properties of semiconductors with an extremum loop .1. Cyclotron and combinational reso-nance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid. State, 1960, vol. 2, pp. 1109–1135 (in Eng.).

90. Vedyayev A.V., Titova M.S., Ryzhanova N.V. et al. Anomalous and spin Hall effects in a magnetic tunnel junction with Rashba spin-orbit coupling. Appl. Phys. Lett., 2013, vol. 103, pp. 032406–032411 (in Eng.).

91. Vedyayev A.V., Ryzhanova N.V., Strelkov N., Dieny B. Anomalous Hall effect in magnetic tunnel junction. Phys. Rev. Lett., 2013, vol. 110, pp. 247204–247206 (in Eng.).

92. Geng H., Wei J.Q., Nie S.J. et al. Soft magnetic property and high-frequency permeability of [Fe80Ni20–O/SiO2]n multilayer thin films for applications in GHz range. Materials Letters, 2013, vol. 92, pp. 346–349 (in Eng.).

93. Geng H., Wei J.Q., Wang Z.W. et al. Soft magnetic property and high-frequency permeability of [Fe80Ni20–O/TiO2]n multilayer thin films. Journal of Alloys and Compounds, 2013, vol. 576, pp. 13–17 (in Eng.).

94. Thomson T. Magnetic properties of metallic thin films in: Barmak K. and Coffey K. (Eds.) Metallic Films for Electronic, Optical and Magnetic Applications, Else-vier, 2014, pp. 454–546 (in Eng.).

95. Sarkar J. Ferromagnetic Sputtering Targets and Thin Films for Silicides and Data Storage, in: Sarkar J. Sputtering Materials for VLSI and Thin Film Devices, Elsevier, 2013, 603 p (in Eng.).

96. Barmak K., Coffey K. (Eds.) Metallic Films for Electronic, Optical and Magnetic Applications, Elsevier, 2014, 634 p (in Eng.).

97. Shi D., Guo Z., Bedford N. Nanomagnetic Mate-rials, in: D. Shi (Ed.). Nanomaterials and Devices, Elsevier, 2015, pp. 105–159 (in Eng.).

98. Buravcova V.E., Gan’shina E.A., Gushchin V.S., Kalinin Yu.E. et al. Gigantskoe magnitosoprotivlenie i magnitooptičeskie svojstva granulirovannyh nanokompozitov metall-dièlektrik. Izvestiâ RAN. Ser. Fiz., 2003, vol. 67, no 7, pp. 918–920 (in Russ.).

99. Kadigrobov A.M., Fistul M.VOL., Efetov K.B. Magnetotransport along a barrier: multiple quantum in-terference of edge states. Physical Review B: Condensed Matter and Materials Physics, 2006, vol. 73, no. 23, pp. 235313–235321 (in Eng.).

100. Gridnev S.A., Kalinin Yu.E., Sitnikov A.V., Stognei O.V. Nelinejnye âvleniâ v nano- i mikrogetero-gennyh sistemah. Moscow: BINOM. Laboratoriâ znanij Publ., 2012 (in Russ.).


Review

For citations:


Granovsky A.B., Kalinin Yu.E., Sitnikov A.V., Stognei O.V. TRANSPORT АND MAGNETIC PHENOMENA IN NANOHETEROGENEOUS STRUCTURES. Alternative Energy and Ecology (ISJAEE). 2015;(20):53-73. (In Russ.) https://doi.org/10.15518/isjaee.2015.20.006

Views: 1187


ISSN 1608-8298 (Print)