

Physical Principles of Increasing Thermoelectric Figure of Merit in Nanostructured Materials
https://doi.org/10.15518/isjaee.2019.34-36.041-072
Abstract
The paper reviews the basic physical principles of improving the thermoelectric quality factor in nanostructured materials such as thin films, superlattices, whiskers, nanoscale structures, quantum wells, quantum wires. The physical fundamentals of optimizing such important parameters of thermoelectric materials as thermoelectric power, electrical resistivity, and thermal conductivity. We have conducted the analysis of the effect of Kapitsa grain-boundary thermal resistance, depending on the type of interfaces: coherent (the presence of elastic strains is possible), semicoherent (misfit dislocations are surrounded by elastic strains), and incoherent (the interaction between phases is minimal), shape and size of inclusions. The thermoelectric power in low-dimensional structures can be increased by changing the form of the density of states near the Fermi level or due to the effect of energy filtering of charge carriers. As part of the increase in the thermopower, the semimetal−semiconductor quantum transition in bismuth and carbonbased nanostructures is considered. The modulation doping of nanostructures allows one to achieve large values of the mobility of charge carriers at their very high concentration, which is demonstrated in the work on the example of superlattices of quantum dots based on silicon and germanium, as well as two-phase composites. Much attention is paid to the analysis of the experimental results, available in literature, which confirm the theoretical conclusions about the possibility of creating highly effective thermoelectric nanomaterials. The main approaches to obtaining nanostructures with the required size and distribution of nanoparticles are briefly considered.
Keywords
About the Authors
S. A. GridnevRussian Federation
Stanislav Gridnev, D.Sc. in Physics and Mathematics, Professor at the Department of Solid State Physics
14 Moskovskii Ave., Voronezh, 394026
Yu. E. Kalinin
Russian Federation
Yurii Kalinin, D.Sc. in Physics and Mathematics, Professor at the Department of Solid State Physics
14 Moskovskii Ave., Voronezh, 394026
V. A. Makagonov
Russian Federation
Vladimir Makagonov, Ph.D. in Physics and Mathematics, Junior Researcher at the Department of Solid State Physics
14 Moskovskii Ave., Voronezh, 394026
References
1. Snyder G.J., Toberer E.S. Complex thermoelectric materials. Nature materials, 2008;(7):105–114.
2. Fitriani F, Ovik R., Long B.D., Barma M.C., Riaz M, Sabri M.F.M., Said S.M., Saidur R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable and Sustainable Energy Reviews, 2016;(64):635–659.
3. Zebarjadi M., Esfarjani K., Dresselhaus M.S., Ren Z.F., Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci., 2012;(5):5147–5162.
4. Martín-González M., Caballero-Calero O., DíazChao P. Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable and Sustainable Energy Reviews, 2013;(24):288–305.
5. Shevelkov A.V. Chemical aspects of the design of thermoelectric materials. Russian Chemical Reviews, 2008;77(1):1–19.
6. Dmitriev A.V., Zvyagin I.P. Current trends in the physics of thermoelectric materials. Physics-Uspekhi, 2010;53(8):789–803.
7. Riffat S., Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003;(23):913–935.
8. Heremans J.P. Low-dimensional thermoelectricity. Acta Physica Polonica A., 2005;108(4):609–634.
9. Ezzahri Y., Zeng G., Fukutani K., Bian Z., Shakouri A. Comparison of thin film microrefrigerators based on Si/SiGe superlattice and bulk SiGe. J. Microelectronics, 2008;39:981–991.
10. Venkatasubramanian R., Siivola E., Colpitts T., O'Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001;431:597–602.
11. Venkatasubramanian R., Colpitts T., Watko E., Lamvik M., El-Masry N. MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications. Journal of Crystal Growth, 1997;(1–4):170721– 817.
12. Funahashi R., Matsubara I. Thermoelectric properties of Pband Ca-doped (Bi2Sr2O4)xCoO2 whiskers. Appl. Phys. Lett., 2001;79(3):362–365.
13. Ivanova L.D., Granatkina Yu.V., Malchev A.G., Nikhezina I.Yu., Emel’yanov M.V. Materials based on solid solutions of bismuth and antimony tellurides formed by rapid melt crystallization methods. Semiconductors, 2019;53(5):652–656.
14. Lin H., Bozin E.S., Billinge S.J.L., Quarez E., Kanatzidis M.G. Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2. Phys. Rev. B., 2005;72(174113):1–7.
15. Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002;297:2229–2232.
16. Tavkhelidze A. Large enhancement of the thermoelectric figure of merit in a ridged quantum well. Nanotechnology, 2009;20:405401–405401-6.
17. Boukai A.I., Bunimovich Y., Tahir-Kheli J., Yu J.-K., Goddard W.A., Heath J.R. Silicon nanowires as efficient thermoelectric materials. Nature Letters, 2008;451:168–171.
18. Hochbaum A.I., Chen R., Delgado R.D., Liang W., Garnett E.C., Najarian M., Majumdar A., Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature Letters, 2008;451:163–167.
19. Keyani J., Stacy A.M. Assembly and measurement of a hybrid nanowire-bulk thermoelectric device. Appl. Phys. Lett., 2006;89(23):233106–233106-3.
20. Baranskiy P.I., Gaydar S.P. On the way from myths to realities in mastering high-performance thermoelectric converters based on the achivements of nanophysics and nanotechnologies. Journal of thermoelectricity, 2007;(2):46–53.
21. Ioffe A.F. Poluprovodnikovye termoelementy. Moscow: Izd-vo AN USSR, 1960; p. 188.
22. Gridnev S.A., Kalinin Yu.E., Makagonov V.A., Shuvaev A.S. Promising thermoelectric materials (Perspektivnie termoelectricheskie materiali). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2013;(1/2):117–125 (in Russ.)
23. Bulat L.P., Drabkin I.A., Osvensky V.B., Pivovarov G.I. On thermoelectric properties of materials with nanocrystalline structure. Journal of thermoelectricity, 2008;(4):26–31.
24. BulatL.P., Pshenai-SeverinD.A., DrabkinI.A., KarataevV.V., OsvenskyV.B., ParkhomenkoY.N., BlankV.D., PivovarovG.I., BublikV.T., TabachkovaN.Y. Mechanisms of improvement of thermoelectric efficiency in bulk nanostructured polycrystals. Journal of thermoelectricity, 2011;(1):13–18.
25. Bulat L.P., Bochkov L.V., Nefedova I.A., Akhiska R. Nanostructuring as a way to increase the efficiency of thermoelectrics (Nanostrukturirovanie kak sposob povysheniya effektivnosti termoelektrikov). Sci.Tech. J. Inf. Technol. Mech. Opt., 2014;(4):48–56 (in Russ.).
26. Pichanusakorn P., Bandaru P. Nanostructured thermoelectric. Material Science and Engineering R, 2010;67:19–63.
27. Thermoelectrics handbook: macro to nano edited by D.M. Rowe. NewYork: Taylor & Francis Group. LLC, 2006; 954 p.
28. Koh Y.K., Gahill D.G. Frequency dependency of the thermal conductivity of semiconductor alloys. Phys. Rev., 2007;5:075207–075207-5.
29. Minnich A.J., Johnson J.A., Schmidt A.J., Esfarjani K., Dresselhaus M.S., Nelson K.A., Chen G. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett., 2011;107:095901–095901-4.
30. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R. Nanoscale thermal transport. J. Appl. Phys., 2003;93:793–818.
31. Nan C.W., Birringer R. Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model. Phys. Rev., 1998;57:8264–8268.
32. Ma Yi, Heijl R. Palmqvist A.E.C. Composite thermoelectric materials with embedded nanoparticles. J Mater Sci., 2013;48:2767–2778.
33. Poudel B., Hao Q., Ma Y., Lan Y., Minnich A., Yu B., Yan X., Wang D., Muto A., Va D. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008;320:634–638.
34. Ma Y., Hao Q., Poudel B., Lan Y., Yu B., Wang D., Chen G., Ren Z. Enhanced thermoelectric figure-ofmerit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett., 2008;8:2580–2584.
35. Xie W., Tang X., Yan Y., Zhang Q., Tritt T.M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys, 2009;105:113713–113713-8.
36. Xie W., Tang X., Yan Y., Zhang Q., Tritt T.M. Unique nanostructures and enhanced thermoelectric performance of meltspun BiSbTe alloys. Appl. Phys. Lett., 2009;94:102111–102111-3.
37. Dirmyer M.R., Martin J., Nolas G.S., Sen A., Badding J.V. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small, 2009;5:933–937.
38. Mehta R.J., Zhang Y., Karthik C., Singh B., Siegel R.W., Borca-Tasciuc T., Ramanath G. A new class of doped nanobulk high-figure-of merit thermoelectrics by scalable bottom-up assembly. Nature Mater., 2012;11:233–240.
39. Son J.S., Choi M.K., Han M.K., Park K., Kim J.-Y., Lim S.J., Oh M., Kuk Y., Park C., Kim S.-J., Hyeon T. n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett., 2012;12:640–647.
40. Joshi G., Lee H., Lan Y., Wang X., Zhu G., Wang D., Gould R.W., Cuff D.C., Tang M.Y., Dresselhaus M.S., Chen G., Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett., 2008;8:4670–4674.
41. Wang X.W., Lee H., Lan Y.C., Zhu G.H., Joshi G., Wang D.Z., Yang J., Muto A.J., Tang M.Y., Klatsky J., Song S., Dresselhaus M.S., Chen G., Ren Z.F. Enhanced thermoelectric figure of merit in nanostructured n -type silicon germanium bulk alloy. Appl. Phys. Lett., 2008;93:193121–193121-3.
42. He J., Sootsman J.R., Girard S.N., Zheng J.-C., Wen J., Zhu Y., Kanatzidis M.G., Dravid V.P. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. J. Am. Chem. Soc., 2010;132:8669–8675.
43. Girard S.N., He J., Li C., Moses S., Wang G., Uher C., Dravid V.P., Kanatzidis M.G. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano Lett., 2010;10:2825–2831.
44. Johnsen S., He J., Androulakis J., Dravid V.P., Todorov I., Chung D.Y., Kanatzidis M.G. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc., 2011;133:3460–3470.
45. Schierning G., Claudio T., Theissmann R., Stein N., Petermann N., Becker A., Denker J., Wiggers H., Hermann R.T., Schmechel R. Nanocrystalline silicon compacted by spark-plasma sintering: Microstructure and thermoelectric properties. Mater. Res. Soc. Symp. Proc., 2010;1267:1267-DD01-09.
46. Saleemi M., Toprak M.S., Fiameni S., Boldrini S., Battiston S., Famengo A., Stingaciu M., Johnsson M., Muhammed M. Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si). J Mater Sci., 2013;48:1940–1946.
47. Nguyen P.K., Lee K.H., Moon J., Kim S.I., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S., Berkowitz A.E. Spark erosion: a high production rate method for producing Bi0,5Sb1,5Te3 nanoparticles with enhanced thermoelectric performance. Nanotechnology, 2012;23:415604–415604-7.
48. Gorsky P.V., Mikhalchenko V.P. On the issue of the mechanism for increasing the thermoelectric figure of merit of the bulk nanostructured materials. Journal of thermoelectricity, 2013;(5):5–9.
49. Costescu R.M., Cahill D.G., Fabreguette F.H., Sechrist Z.A., George S.M. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science, 2004;303:989–990.
50. Sootsman J.R., Kong H., Uher C., D'Angelo J.J., Wu C.‐I., Hogan T.P., Caillat T., Kanatzidis M.G. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem., 2008;120:8746–8750.
51. Hsu, K.F. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit / K.F. Hsu [et al.]// Science. – 2004. – Vol. 303. – P. 818–821.
52. Zhao L.-D., Lo S.-H., He J., Li H., Biswas K., Androulakis J., Wu C.-I., Hogan T.P., Chung D.-Y., Dravid V.P., Kanatzidis M.G. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructure. J. Am. Chem. Soc., 2011;133:20476–20487.
53. Zhang Q., He J., Zhu T.J., Zhang S.N., Zhao X.B., Tritt T.M.High figure ofmerit and natural nanostructure in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett., 2008;93:102109–102109-3.
54. Su X., Li H., Wang G., Chi H., Zhou X., Tang X., Zhang Q., Uher C. Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125-0.20) with in situ nanostructure. Chem. Mater., 2011;23:2948–2955.
55. Han M.-K., Ahn K., Kim H., Rhyee J.-S., Kim S.-J. Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement. J. Mater. Chem., 2011;21:11365–11370.
56. Ivanova L.D. Melt spinning as a promising method for preparation of bismuth and antimony telluride solid solution materials. Journal of thermoelectricity, 2013;(1):31–40.
57. Wang H., Zhang Q., Yu B., Wang H., Liu W., Chen G., Ren Z. Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys. J. Mater. Res., 2011;26:912–916.
58. Liu W., Yan X., Chen G., Ren Z. Recent advances in thermoelectric nano composites. Nano Energy, 2012;1:42–56.
59. He J., Sootsman J.R., Girard S.N., Zheng J.-C., Wen J., Zhu Y., Kanatzidis M.G., Dravid V.P. On the orignin of increased Phonon scattering in nanostructured PbTe based thermoelectric materials. J. Am. Chem. Soc., 2010;132:8669–8675.
60. Biswas K., He J., Zhang Q., Wang G., Uher C., Dravid V.P., Kanatzidis M.G. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature Chem., 2011;3:160–166.
61. Poudeu P.F.P., D'Angelo J., Downey A.D., Short J.L., Hogan T.P., Kanatzidis M.G. High thermoelectric figure ofmerit and nanostructuring in bulk p-type Na1−xPbmSbyTem+2. Angew. Chem., 2006;118:3919– 3923.
62. Pei Y., Lensch‐Falk J., Toberer E.S., Medlin D.L., Snyder G.J. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv. Funct. Mater., 2011;21:241–249.
63. Liu W.-S., Zhang B.-P., Zhao L.-D., Li J.-F. Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVgroup elements for Sb. Chem. Mater., 2008;20:7526– 7531.
64. Wang H., Li J.-F., Nan C.-W., Zhou M. High performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl. Phys. Lett., 2006;88:092104– 092104-3.
65. Zhou M., Li J.F., Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc., 2008;130:4527–4532.
66. He Q., Hu S., Tang X., Lan Y., Yang J., Wang X., Ren Z., Hao Q., Chen G. The great improvement effect of pores on ZT in Co1−xNixSb3 system. Appl. Phys. Lett., 2008;93:042108–042108-3.
67. Mingo N., Hauser D., Kobayashi N.P., Plissonnier M., Shakouri A. ‘Nanoparticles-in-alloy’ approach to efficient thermoelectrics: silicides in SiGe. Nano Lett., 2009;9:711–715.
68. Kim W., Majumdar A. Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys., 2006;99:084306–084306-7.
69. Pei Y., Heinz N.A., LaLonde A., Snyder G.J. Combination of large nanostructure and complex band structure for high performance lead telluride. Energy Environ. Sci., 2011;4:3640–3645.
70. Girard S.N., He J., Zhou X., Shoemaker D., Jaworski C.M., Uher C., Dravid V.P., Heremans J.P., Kanatzidis M.G. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nano structures. J. Am. Chem. Soc., 2011;133:16588–16597.
71. Ito M., Tada T., Katsuyama S. Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying. J. Alloys Compounds, 2003;350:296–302.
72. Ito M., Tanaka T., Hara S. Thermoelectric properties of β-FeSi2 with electrically insulating SiO2 and conductive TiO dispersion by mechanical alloying. J. Appl. Phys., 2004;11:6215–6209.
73. Huang X.Y., Xu Z., Chen L.D. Thermoelectric performance of ZrNiSn/ZrO2 composite. Solid State Commun, 2004;130:181–185.
74. He Z., Stiewe C., Platzek D., Karpinski G., Müller E., Li S., Toprak M., Muhammed M. Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit. Nanotechnology, 2007;18:235602– 235602-5.
75. Li J.F., Liu J. Effect of nano-SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals. Phys. Status Solidi, 2006;203:3768–3773.
76. Park D., Kim M., Oh T. Thermoelectric energyconversion characteristics of n-type Bi2(Te,Se)3 nanocomposites processed with carbon nanotube dispersion. Curr. Appl. Phys. 2011;11:S41–S45.
77. Li F., Huang X., Sun Z., Ding J., Jiang J., Jiang W., Chen L. Thermoelectric properties of n-type Bi2Te3based nanocomposite fabricated by spark plasma sintering. J. Alloys Compd., 2011;509:4769–4773.
78. Popov M., Buga S., Vysikaylo P., Stepanov P., Skok V., Medvedev V., Tatyanin E., Denisov V., Kirichenko A., Aksenenkov V., Blank V. C60-doping of nanostructured Bi–Sb–Te thermoelectric. Phys. Status Solidi, 2011;208:2783–2789.
79. Kulbachinskii V.A., Kytin V.G., Popov M.Yu., Buga S.G., Stepanov P.B., Blank V.D. Composites of Bi2–xSbxTe3 nanocrystals and fullerene molecules for thermoelectricity. J. Solid State Chem., 2012;193:64–70.
80. Zhao X.Y., Shi X., Chen L.D., Zhang W.Q., Bai S.Q., Pei Y.Z., Li X.Y. Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett., 2006;89:092121–092121-3.
81. Panin Yu.V., Ilyashev I.S., Kalinin Yu.E., Kamynin A.A., Korolev K.G. Nanosized oxide filler influence on the properties of p-type conductivity bismuth chalcogenides (Vliyanie nanorazmernogo oksidnogo napolnitelya na svoistva khal'kogenidov vismuta p-tipa provodimosti). Bulletin of the Voronezh State Technical University, 2017;(6):151–156 (in Russ.)
82. Li H., Tang X., Su X., Zhang Q. Preparation and thermoelectric properties of high performance Sb additional Yb0.2Co4Sb12+y bulk materials with nano structure. Appl. Phys. Lett., 2008;92:202114–202114-3.
83. Liu W.‐S., Zhang Q., Lan Y., Chen S., Yan X., Zhang Q., Wang H., Wang D., Chen G., Ren Z. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv. Energy Mater, 2011;1:577–587.
84. Ji X., He J., Su Z., Gothard N., Tritt T.M. Improved thermoelectric performance in polycrystalline ptype Bi2Te3 via alkali metal salt hydrothermal nanocoating treatment approach. J. Appl. Phys., 2008;104:034907–034907-6.
85. Hicks L.D., Dresselhaus M.S. Effect of quantumwell structures on the thermoelectric figure of merit. Phys. Rev., 1993;47:12727–12731.
86. Heremans J.P., Thrush C.M., Morelli D.T. Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys., 2005;98:063703–063703-6.
87. Paul B., Kumar V. A., Banerji P. Embedded Agrich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys., 2010;108:064322–064322-5.
88. Zide J.M., Klenov D.O., Stemmer S., Gossard A.C. Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett., 2005;87:112102–112102-3.
89. Xiong Z., Chen X., Zhao X., Bai S., Huang X., Chen L. Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0,22Co4Sb12. Solid State Sci., 2009;11:1612–1616.
90. Xiong Z., Chen X., Huang X., Bai S., Chen L. High thermoelectric performance of Yb0.26Co4Sb12/GaSb nanocomposite originating from scattering electrons of low energy. Acta Mater., 2010;58:3995–4002.
91. Xie W.J. Simultaneously optimizing the independent thermoelectric properties in (Ti, Zr, Hf) (Co, Ni) Sb alloy by in situ forming InSb nanoinclusions. Acta Mater., 2010;58:4705–4713.
92. Ko D.-K., Kang Y., Murray C. B. Enhanced thermopower via carrier energy filtering in solutionprocessable Pt-Sb2Te3 nanocomposites. Nano Lett., 2011;11:2841–2844.
93. Zhang Y., Snedaker M.L., Birkel C.S., Mubeen S., Ji X., Shi Y., Liu D., Liu X., Moskovits M., Stucky G.D. Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors. Nano Lett., 2012;12:1075–1080.
94. Kim S.I., Ahn K., Yeon D.-H., Hwang S., Kim H.-S., Lee S.M., Lee K.H. Enhancement of Seebeck coefficient in Bi0,5Sb1,5Te3 with high-density tellurium nanoinclusions. Appl. Phys. Express, 2011;4(9):091801– 091801-3.
95. Lee K.-H., Kim H.-S., Kim S.-I., Lee E.-S., Lee S.-M., Rhyee J.-S., Jung J.-Y., Kim I.-H., Wang Y., Koumoto K. Enhancement of thermoelectric figure of merit for Bi0,5Sb1,5Te3 by metal nanoparticle decoration. J. Electron. Mater., 2012;41:1165–1169.
96. Ohta H., Kim S.W., Mune Y., Mizoguchi T., Nomura K., Ohta S., Nomura T., Nakanishi Y., Ikuhara Y., Hirano M., Hosono H., Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Mater., 2007;6:129–134.
97. Hicks L.D., Harman T.C., Sun X., Dresselhaus M.S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev., 1996;53:R10493–R10496.
98. Harman T.C., Walsh M.P., laforge B.E., Turner G.W. Nanostructured thermoelectric materials. J. Electron. Mater., 2005;34:L19–L22.
99. Heremans J.P., Thrush C.M., Morelli D.T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev., 2004;70:115334–115334-5.
100. Dresselhaus M.S., Chen G., Tang M.Y., Yang R.G., Lee H., Wang D.Z., Ren Z.F., Fleurial J.P., Gogna P. New directions for nanoscale thermoelectric materials research. Mater. Res. Soc. Symp. Proc., 2006;886:3–12.
101. Ravich Y.I. Selective carrier scattering in thermoelectric materials. CRC Handbook of Thermoelectrics. In: CRC Press, Boca Raton, 1995; pp. 407–440.
102. Zide J.M.O., Vashaee D., Bian Z.X., Zeng G., Bowers J.E., Shakouri A., Gossard A.C. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/ In0.53Ga0.28Al0.19As superlattices. Phys. Rev., 2006;74:205335–205335-5.
103. Kishimoto K., Yamamoto K., Koyanagi T. Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size. Jpn. J. Appl. Phys., 2003;42:501–508.
104. Homm G., Piechotka M., Kronenberger A., Laufer A., Gather F., Hartung D., Heiliger C., Meyer B.K., Klar P.J., Steinmüller S.O., Janek J. Thermoelectric measurements on sputtered ZnO/ZnS multilayers. J. Electron. Mater., 2010;39:1504–1509.
105. Mahan G.D., Levinson L.M., Philipp H.R. Theory of conduction in ZnO varistors. J. Appl. Phys., 1979;50:2799–2812.
106. Popescu A., Woods L.M., Martin J., Nolas G.S. Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev., 2009;79:205302– 205302-7.
107. Jones R. E., Wesolovski S. P. Electrical, thermoelectric, and optical properties of strongly degenerate polycrystalline silicon films. J. Appl. Phys., 1984;56:1701–1706.
108. Seto, J.Y.W. The electrical properties of polycrystalline silicon films. J. Appl. Phys., 1975;46:5247– 5254.
109. Kishimoto K., Tsukamoto M., Koyanagi T. Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering. Journal of Applied Physics, 2002;92:5331–5339.
110. Faleev S.V., Léonard F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev., 2008;77:214304–214304-9.
111. Li H., Tang X., Zhang Q., Uher C. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett., 2009;94:102114–102114-3.
112. Liu D.-W., Li J.-F., Chen C., Zhang B.-P. Effect of SiC nanodispersion on the thermoelectric properties of p-type and n-type Bi2Te3-based alloys. J. Electron. Mater., 2011;40:992–998.
113. Dresselhaus M. S., Chen G., Tang M. Y., Yang R. G., Lee H., Wang D. Z., Ren Z. F., Fleurial J.‐P., Gogna P. New directions for low-dimensional thermoelectric materials. Adv. Mater., 2007;19:1043–1053.
114. Vedernikov M.V., Uryupin O.N., Goltsman B.M., Ivanov Yu.V., Kumzerov Yu.A. Experimental thermopower of quantum wires. in: Proceedings of the International Conference on Thermoelectric, 2001;19:361–363.
115. Lin Y.-M., Sun X., Dresselhaus M.S. Transport properties of Bi1ÀxSbx alloy nanowires synthesized by pressure injection. Appl. Phys. Lett., 2001;79:2403–2405.
116. Dresselhaus M. S., Lin Y.-M., Rabin O., Black M.R., Kong J., Dresselhaus G. Nanowires. Springer Handbook of Nanotechnology. Berlin Heidelberg: Springer-Verlag, 2010; pp. 113–160.
117. Bandaru P.R. Electrical properties and applications of carbon nanotube structures. Journal of Nanoscience and Nanotechnology, 2007;7:1239–1267.
118. Jain A.L. Temperature Dependence of the Electrical Properties of Bismuth-Antimony. Alloys Phys. Rev., 1959;114:1518–1528.
119. Markov O. I. Gradient variband alloys of bismuthantimony. Advances in Applied Physics, 2014;2(5):447–452.
120. Rabin O., Lin Y.-M., Dresselhaus M.S. Anomalously high thermoelectric figure of merit in Bi1−xSbx nanowires by carrier pocket alignment. Appl. Phys. Lett., 2001;79:81–83.
121. Ketterer B., Uccelli E., Morral A.F. Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. Nanoscale, 2012;4:1789–1793.
122. Ponseca C.S., Němec H., Wallentin J., Anttu N., Beech J.P., Iqbal A., Borgström M., Pistol M.-E., Samuelson L., Yartsev A. Bulk-like transverse electron mobility in an array of heavily n-doped InP nanowires probed by terahertz spectroscopy. Phys. Rev. B, 2014;90:85405–85405-7.
123. Stormer H.L., Dingle R., Gossard A.C., Wiegmann W., Logan R. Electronic properties of modulationdoped GaAs-AlxGa1-xAs superlattices. Physics of Semiconductors, 1979;557–560.
124. Borisenko V.E., Vorobjova A.I., Danilyuk A. L., Outkina E. A. Nanoelectronics: Theory and Practice: textbook., Moscow: BINOM. Laboratoriya znanii, 2013; 366 p.
125. Pfeiffer L., West K.W., Stormer H.L., Baldwin K.W. Electron mobilities exceeding 107 cm2/V s in modulation doped GaAs. Appl. Phys. Lett., 1989;55:1888–1890.
126. Yu P., Cardona M. Fundamentals of Semiconductors: Physics and Materials Properties. Berlin, Heidelberg: Springer-Verlag, 2010; 793 p.
127. Walukiewicz W., Ruda H.E., Lagowski J., Gatos H.C. Electron mobility in modulation-doped heterostructures. Phys. Rev., 1984;30:4571–4582.
128. Kato H., Yamamoto A., Takimoto M., Ohta T., Sakamoto K., Miki K., Whitlow L., Kamisako K., Matsui T. Thermoelectric quantum-dot superlattices with high ZT. Proceedings of the 17th International Conference on Thermoelectrics, 1998; pp. 253–256.
129. Sun X., Cronin S.B., Liu J., Wang K.L., Koga T., Dresselhaus M.S., Chen G. Experimental Study of the effect of the quantum well structures on the thermoelectric figure of merit in Si/Si1-xGex system. Proceedings of the 18th International Conference on Thermoelectric, 1999:369–374.
130. Zebarjadi M., Joshi G., Zhu G., Yu B., Minnich A., Lan Y., Wang X., Dresselhaus M., Ren Z., Chen G. Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett, 2011;11:2225–2230.
131. Yu B., Zebarjadi M., Wang H., Lukas K., Wang H., Wang D., Opeil C., Dresselhaus M., Chen G., Ren Z. Enhancement of thermoelectric properties by modulation doping in silicon germanium alloy nanocomposites. Nano Lett.; 2012;12:2077–2082.
132. Lan Y., Minnich A.J., Chen G., Ren Z. Enhancement of thermoelectric figure of merit by a bulk nanostructuring approach. Adv. Funct. Mater., 2010;20:357–376.
133. Narayan V., Pepper M., Griffiths J., Beere H., Sfigakis F., Jones G., Ritchie D., Ghosh A. Unconventional metallicity and giant thermopower in a strongly interacting two-dimensional electron system. Phys. Rev. B., 2012;86:125406–125406-7.
134. Machida Y., Lin X., Kang W., Izawa K., Behnia K. Colossal Seebeck coefficient of hopping electrons in (TMTSF)2PF6. Phys. Rev. Lett., 2016;116:087003– 087003-5.
135. Litvinova K.I., Voronin A.I., Gorshenkov M.V., Karpenkov D.Y., Novitskii A.P., Khovaylo V.V. Thermoelectric properties of CexNdyCo4Sb12 skutterudites. Semiconductors, 2017;51(7):928–931.
136. Khovaylo V.V., Korolkov T.A., Voronin A.I., Gorshenkov M.V., Burkov A.T. Rapid preparation of InxCo4Sb12 with a record-breaking ZT = 1.5: the role of the In overfilling fraction limit and Sb overstoichiometry. J. Mater. Chem. A, 2017;5:3541–3546.
137. Suekuni K., Takabatake T. Cu–S based synthetic minerals as efficient thermoelectric materials at medium temperatures. APL Materials, 2016;4:104503– 104503-11.
138. Kurochka K.V., Melnikova N.V. Investigation of electrical properties of glassy AgGe1+xAs1−x(S+CNT)3 (x = 0.4; 0.5; 0.6) at temperature range from 10 to 300K. Solid State Ionics, 2017;300:53–59.
139. Aplesnin S.S., Romanova O.B., Galyas A.I., Sokolov V.V. Study of electrical and thermoelecrical properties of sulfides TmxMn1-x. Physics of the solid state, 2016;58(1):19–24.
140. Liu Z., Pei Y., Geng H., Zhou J., Meng X., Cai W., Liu W., Su J. Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy, 2015;13:554– 562.
141. Du X. Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2014;587:6–9.
142. Ivanov Yu.V., Uryupin O.N. Thermoelectric power of a luttinger liquid. Semiconductors, 2019;53(5):641–646.
Review
For citations:
Gridnev S.A., Kalinin Yu.E., Makagonov V.A. Physical Principles of Increasing Thermoelectric Figure of Merit in Nanostructured Materials. Alternative Energy and Ecology (ISJAEE). 2019;(34-36):41-72. (In Russ.) https://doi.org/10.15518/isjaee.2019.34-36.041-072