Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Substantiation of the Capacity of the Wind-Driven Power Plant with a Small Combined Heat and Power Plant

https://doi.org/10.15518/isjaee.2020.01-06.031-039

Abstract

The paper deals with the issue of choosing the electric power of a wind-driven power plant (WDPP) when working together with a gas turbine unit (GTU). The paper touches upon the problem of improving the efficiency of energy supply to towns by creating combined sources based on small CHPP and wind turbines.

The authors have proposed a scheme of the combined source, which includes the installation operating on organic fuel and the installation operating at the expense on a renewable energy source – wind. In order to determine the effectiveness of the source, we have developed a mathematical model which helps to calculate the quantitative and economic indicators. The initial data used are: the daily graph of electrical loads; the graph of thermal loads of heating, ventilation and hot water; the average monthly temperature and wind speed; the dependence of changes in the electrical power of wind turbines on wind speed. According to this mathematical model, the combined source is calculated (GTU with a capacity of 2.5 MW and wind turbines with a capacity of 100 kW). Annual electric-power generation at gas turbines is 26717,703 MW·h / year, wind turbines – 92,917 MW·h / year. Economic indicators are also defined – net present value (NPV), discounted profitability index, internal rate of return and payback time.

The paper makes a comparative analysis of the payback period of the proposed scheme depending on the change in the installed capacity of wind turbines from 100 to 1500 kW. Analyzing the obtained values of NVP and the payback time, it can be concluded that as the power of wind turbines increases, the economic efficiency of the energy complex decreases. This is due to increased investment in wind turbines, a change in the starting speed of a wind power plant, as well as a decrease in electrical energy production due to wind turbines. The conclusion is made about the expediency of using in the combined scheme of a wind-driven power-plant with a capacity of 100–300 kW, with a payback time of about 10 years.

About the Authors

Yu. E. Nikolaev
Yuri Gagarin State Technical University of Saratov
Russian Federation

Yuri Nikolaev, D.Sc. in Engineering, Professor at the Chair of Thermal and Atomic Energy 

Spin код: 5062-0254 S

Scopus Author ID: 5707815

77 Polytehnicheskaya Str., Saratov, 410054, Russia



V. Yu. Ignatov
Yuri Gagarin State Technical University of Saratov
Russian Federation

Vladimir Ignatov, Postgraduate, the Chair of Thermal and Atomic Energy

Spin код: 8793-3400 

Scopus Author ID: 57500720736

77 Polytehnicheskaya Str., Saratov, 410054, Russia



A. A. Fedina
Yuri Gagarin State Technical University of Saratov
Russian Federation

Anastasiia Fedina,  MSc, the Chair of Thermal and Atomic Energy

77 Polytehnicheskaya Str., Saratov, 410054, Russia



References

1. Filippov S.P., Dil'man M.D. CHP Plants in Russia: the Necessity for Technological Renovation (TETS v Rossii: neobkhodimost' tekhnologicheskogo obnovleniya). Thermal Engineering, 2018;65(11):775– 790; doi: 10.1134/S0040601518110022 (in Russ).

2. Stennikov V.A., Zharkov S.V., Postnikov I.V., et al. Integrated power supply schemes based on CHPP and WDPP (Integrirovannye skhemy energosnabzheniya na baze TETs i VES). Promyshlennaya energetika, 2016; 11:57–62 (in Russ).

3. Nikolaev Yu.E., Ignatov V.Yu. Assessment of economic indicators of an integrated energy supply scheme based on a small CHP and renewable energy sources (Otsenka ekonomicheskikh pokazatelei integrirovannoi skhemy energosnabzheniya na osnove maloi TETs i VIE). XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Sovershenstvovanie energeticheskikh sistem i teploenergeticheskikh kompleksov”, 30 Oct – 1 Nov 2018; Saratov, Russia; pp.129–133 (in Russ).

4. Gabderakhmanova T.S., Direktor L.B. Analysis of stand-alone power supply schemes based on renewable energy sources (Analiz skhem avtonomnogo elektrosnabzheniya na osnove vozobnovlyaemykh istochnikov energiirakhmanova). Promyshlennaya energetika, 2015;4:48–51 (in Russ).

5. Doroshin A.N., Vissarionov V.I., Malinin N.K. Multifactorial analysis of the efficiency of energy complexes based on renewable energy sources for energy supply of an stand-alone power supply consumer (Mnogofaktornyi analiz effektivnosti energokompleksov na osnove vozobnovlyaemykh istochnikov energii dlya energoobespecheniya avtonomnogo potrebitelya). Vestnik MEI, 2011;2:45–53 (in Russ).

6. Marchenko O.V., Solomin S.V. Analysis of the sharing of solar and wind energy in stand-alone power supply (Analiz sovmestnogo ispol'zovaniya energii solntsa i vetra v sistemakh avtonomnogo energosnabzheniya). Promyshlennaya energetika, 2016;9:39–43 (in Russ).

7. Gangoli Rao A., van den Oudenalder F.S.C., Klein S.A. Natural gas displacement by wind curtailment utilization in combined-cycle power plants. Energy, 2019;168:477–491.

8. Lund H. large-scale integration of wind power into different energy systems. Energy, 2005;30:2402– 2412.

9. Pensini A., Rasmussen C.N., Kempton W. Economic analysis of using excess renewable electricity to displace heating fuels. Energy, 2014;131:530–543.

10. Zharkov S.V., Keiko A.V., Postnikov I.V., Pen'kovskii A.V. Method of operation of the steam turbine plant (Sposob raboty paroturbinnoi ustanovki). Patent RF No. 2557049. 07.20.2015. Available on: https://yandex.ru/patents/doc/RU2557049C2_20150720 (02.04.2020 (in Russ).

11. Sosnina E.N., Shakukho A.V., Lipuzhin I.A., et al. Technical and economic analysis of the use of winddiesel power plants for power supply of energy remote settlements (Tekhniko-ekonomicheskii analiz primeneniya vetro-dizel'nykh elektrostantsii dlya elektrosnabzheniya energoudalennykh poselenii). Trudy NGTU named after. R.E. Alekseeva, 2016;112(1):65–72 (in Russ).

12. Denisov R.S. On the issue of substantiating the composition and parameters of wind-diesel power plant equipment (K voprosu obosnovaniya sostava i parametrov oborudovaniya vetro-dizel'noi elektrostantsii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;151(11):72–77 (in Russ).

13. Elistratov V.V., Konishchev M.A. Wind-diesel power stations for stand-alone power supply of the Northern territories of Russia (Vetrodizel'nye elektrostantsii dlya avtonomnogo energosnabzheniya severnykh territorii Rossii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;151(11):62–71 (in Russ).

14. Sibgatulin A.R., Elistratov V.V. Optimization of equipment composition based on renewable energy sources in power supply systems for stand-alone consumers of small capacity (Optimizatsiya sostava oborudovaniya na osnove vozobnovlyaemykh istochnikov energii v sistemakh elektrosnabzheniya avtonomnykh potrebitelei nebol'shoi moshchnosti). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;23–24:51–67; doi: 10.15518/isjaee.2016.23-24.051-067 (in Russ).

15. Cao K.K., Nitto A.N., Sperber E., et al. Expanding the horizons of power-to-heat: cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems. Energy, 2018;164:925–936.

16. Deryugina G.V., Karpov N.D., Shestopalova T.A., et al. Study of factors and mathematical models that affect the design performance of energy efficiency of wind-diesel complexes (Issledovanie faktorov i matematicheskikh modelei, vliyayushchikh na proektnye pokazateli energoeffektivnosti vetrodizel'nykh kompleksov). Vestnik KRSU, 2017;8:44–48 (in Russ).

17. Gribkov S.V. Wind-solar-diesel power supply systems of small capacity as a basis for RES development in Russia (Vetro-solnechno-dizel'nye kompleksy elektrosnabzheniya malykh moshchnostei kak osnova razvitiya VIE v Rossii). Materialy mezhdunarodnogo kongressa REENCON-XXI: “Vozobnovlyaemaya energetika XXI vek: Energeticheskaya i ekonomicheskaya effektivnost'”, 13–14 October, 2016; pp. 124–128 (in Russ).

18. Bezrukikh P.P., Bezrukikh P.P. (ml.), Gribkov S.V. Wind power engineering: reference and methodological publication (Vetroenergetika: Spravochnometodicheskoye izdaniye). Moscow: “IntekhenergoIzdat” Publ, 2014 (in Russ).

19. The official website of NASA E-resource. Available on: https://power.larc.nasa.gov/ (02.21.2019).

20. Stationary gas turbine plants:book of reference (Statsionarnye gazoturbinnye ustanovki: spravochnik) / L.V. Arsen'ev et al. Leningrad: “Mashinostroenie” Publ., Leningradskoe otdelenie, 1989; pp. 120.


Review

For citations:


Nikolaev Yu.E., Ignatov V.Yu., Fedina A.A. Substantiation of the Capacity of the Wind-Driven Power Plant with a Small Combined Heat and Power Plant. Alternative Energy and Ecology (ISJAEE). 2020;(1-6):31-39. (In Russ.) https://doi.org/10.15518/isjaee.2020.01-06.031-039

Views: 689


ISSN 1608-8298 (Print)