Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

From Bioethanol Exploitation to High Grade Hydrogen Generation: Steam Reforming Promoted by a Co-Pt Catalyst in a Pd-Based Membrane Reactor

https://doi.org/10.15518/isjaee.2020.01-06.060-076

Abstract

There is a general agreement about the consideration that the fossil fuels are a limited resource and the emission of carbon dioxide and other harmful products are the main cause of the global warming and climate change. The interest for decreasing the fossil fuels dependence and reducing the greenhouse gases emissions represents a top priority. The biomass is a renewable resource useful for biodiesel and bioethanol production. The latter, most plentiful, is currently considered as green ethanol produced from biomass by biological processes. Meanwhile, membrane reactors represent an innovative and intensified technology for the production and the simultaneous recovery of high-grade hydrogen in only one stage. Here, we describe an efficient medium-temperature (T = 400 °C) bioethanol steam reforming process in a thin (~5 mm of metallic layer) supported Pd-based membrane reactor packed with a not commercial Co(10%)Pt (3%)/CeO2-ZrO2-Al2O3 bi-metallic catalyst at space velocity between 1900 h-1 and 4800 h-1 and reaction pressure between 1.5 and 2.0 bar. A real bioethanol mixture coming from industry is supplied to the membrane reactor for producing high grade hydrogen, reaching 60% of ethanol conversion (versus ~ 40% of the equivalent conventional reactor) at 400 °C, 2.0 bar and 1900 h-1, meanwhile recovering almost 70% of the hydrogen produced during the bioethanol steam reforming reaction with a purity higher than 99%. This would make the delivery of hydrogen for PEM fuel cells supplying – and hence the use of green bioethanol as a practical hydrogen carrier – feasible.

About the Authors

A Iulianelli
Institute on Membrane Technology of the Italian National Research Council
Italy

Adolfo Iulianelli, Ph.D. in Chemical and Material Engineering at the University of Calabria (Cosenza, Italy). Researcher at the Institute on Membrane Technology of the Italian National Research Center; Associate Professor

via P. Bucci Cubo 17/C c/o University of Calabria, Rende, CS 87036, Italy



V. Palma
University of Salerno
Italy

Vincenzo Palma, Professor of Industrial Chemistry and Nanostructured Catalysts for Energy and Environment, Department of Industrial Engineering

Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy



G Bagnato
Institute on Membrane Technology of the Italian National Research
Italy

Giuseppe Bagnato, Ph.D. in Chemical Engineering, Research Associate on seafood bio-refinery at Heriot-Watt University

via P. Bucci Cubo 17/C c/o University of Calabria, Rende, CS 87036, Italy



C. Ruocco
University of Salerno
Italy

Concetta Ruocco, Department of Industrial Engineering

Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy



Yan Huang
Nanjing Tech University
China

Yan Huang, State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering

Xin-Mo-Fan Road 5, Nanjing, 210009, China



N. Veziroğlu
International Association for Hydrogen Energy
United States

Nejat Veziroğlu, Ph.D. in Heat Transfer, Professor, President of International Association for Hydrogen Energy, University of Miami

794 SW 40 St. #303, Miami, FL 33155, USA



A. Basile
Institute on Membrane Technology of the Italian National Research Council
Italy

Angelo Basile, Ph.D. in Technical Physics, Senior Researcher at the Institute Membrane Technology (ITM) of the Italian National Research Council (CNR)

via P. Bucci Cubo 17/C c/o University of Calabria, Rende, CS 87036, Italy

 



References

1. Fischer G., Schrattenholzer L. Biomass. Bioen, 2001;20:151.

2. Trane R., Dahl S., Skjøth Rasmussen M.S., Jensen A.D. Int. J. Hydrogen En., 2012;37:6447.

3. Llorca J., Corberán V.C., Divins N.J., Fraile R.O., Taboada E. Hydrogen frombioethanol, Ch. 7, in: L.M. Gandia, G. Arzamendi, P.M. Dieguez (Eds.). Renewable Hydrogen Technologies, Elsevier, 2013, pp. 1–472. ISBN: 978-0-444-56352-1.

4. Song H., Zhang L., Watson R.B., Braden D., Ozkan U.S. Catal. Today, 2007;129:346.

5. Iulianelli A., Basile A. Catal. Sci. Techn., 2011;1:366.

6. Haga F., Nakajima T., Yamashita K., Mishima S. React. Kinet.Catal. Lett., 1998;63:253.

7. Drioli E., Brunetti A., DiProfio G., Barbieri G. Green Chem., 2012;14:1561.

8. Yun S., Lim H., Oyama S.T. J. Membr. Sci., 2012;409–410:222.

9. Lin W.-H., Liu Y.-C., Chang H.-F. Int. J. Hydrogen En., 2010;35:12961.

10. Murmura M.A., Patrascu M., Annesini M.C., Palma V., Ruocco C., Sheintuch M. Int. J. Hydrogen En., 2015;40:5837.

11. Hedayati A., Le Corre O., Lacarrière B., Llorca J. Int. J. Hydrogen En., 2015;40:3574.

12. Iulianelli A., Liguori S., Huang Y., Basile A. J. Power Sou., 2015;273:25.

13. Visconti C.G., Lietti L., Forzatti P., Zennaro R. Appl. Catal. A Gen., 2007;330:49.

14. Espinal R., Anzola A., Adrover E., Roig M., Chimentao R., Medina F., Lopez E., Borio D., Llorca J. Int. J. Hydrogen En., 2014;39:10902.

15. Papadias D.D., Lee S.H.D., Ferrandon M., Ahmed S. Int. J. Hydrogen En., 2010;35:2004.

16. Basile A., Pinacci P., Iulianelli A., Broglia M., Drago F., Liguori S., Longo T., Calabrò V. Int. J. Hydrogen En., 2011;36:2029.

17. Seelam P.K., Liguori S., Iulianelli A., Pinacci P., Drago F., Calabrò V., Huuhtanen M., Keiski R., Piemonte V., Tosti S., De Falco M., Basile A. Catal.Today., 2012;193:42.

18. Silva da A.M., Mattos L.V., Múnera J., Lombardo E., Noronha F.B., Cornaglia L. Int. J. Hydrogen En., 2015;40:4154.

19. Shu S., Huang Y., Hu X., Fan Y., Xu N. J. Phys. Chem. C, 2009;113:19618.

20. Yu J., Hu X., Huang Y. Sep. Purif. Tech., 2010;70:314.

21. Tanaka D.A.P., Nagase M.A.L.T., Okazaki J., Wakui Y., Mizukami F., Suzuki T.M. Adv. Mater., 2006;18:630.

22. Li H., Goldbach A., Li W., Xu H. J. Membr. Sci., 2007;299:130.

23. Mateos-Pedrero C., Silva H., Pacheco Tanaka D.A., Liguori S., Iulianelli A., Basile A., Mendes A. Appl. Catal. B Env., 2015;174:67.

24. Sanz R., Calles J.A., Alique D., Furones L., Ordóñez S., Marín P., Corengia P., Fernandez E. Int. J. Hydrogen En., 2011;36:15783.

25. Nair B.K.R., Choi J., Harold M.P. J. Membr. Sci., 2007;288:67.

26. Itoh N., Akiha T., Sato T. Catal. Today, 2005;104:231.

27. Rothenberger K.S., Cugini A.V., Howard B.H., Killmeyer R.P., Ciocco M.V., Morreale B.D., Enick R.M., Bustamante F., Mardilovich I.P., Ma Y.H. J. Membr. Sci., 2004;244:55.

28. Zhang X., Xiong G., Yang W. J. Membr. Sci., 2008;314:67.

29. Yun S., Oyama S.T. J. Membr. Sci., 2011;375:28.

30. Mardilovich P.P., She Y., Ma Y.H., Rey M.H. AIChE J., 1998;44:310.

31. Maneerung T., Hidajat K., Kawi S. J. Membr. Sci., 2014;452:127.

32. Wang L., Yoshiie R., Uemiya S. J. Membr. Sci., 2007:306:1.

33. Nam S.E., Lee K.H. J. Membr. Sci., 2001;192:177.

34. Peters T.A., Tucho W.M., Ramachandran A., Stange M., Walmsley J.C., Holmestad R., Borg A., Bredesen R. J. Membr. Sci., 2009;326:572.

35. Ryi S.K., Li A., Lim C.J., Grace J.R. Int. J. Hydrogen En., 2011;36:9335.

36. Sanz R., Calles J.A., Ordóñez S., Marín P., Alique D., Furones L. J. Membr. Sci., 2013;446:410.

37. Straczewski G., Völler-Blumenroth J., Beyer H., Pfeifer P., Steffen M., Felden I., Heinzel A., Wessling M., Dittmeyer R. Chem. Eng. Proc., 2014;81:13.

38. Goldbach A., Bao F., Qi C., Bao C., Zhao L., Hao C., Jiang C., Xu H. Int. J. Greenh. Gas. Contr., 2015;33:69.

39. Woo R.J., Moon D., Sang L.D., Lee D., Hong S. Theor. Appl. Chem. Eng., 2004:10:1024.

40. Padilla R., Benito M., Rodrìguez L., Serrano A., Munoz G., Daza L. Int. J.Hydrogen En., 2010;35:8921.

41. Lendzion-Bieluń Z., Jędrzejewski R., Arabczyk W. Cent. Eur. J. Chem., 2011;9:834.

42. Norman A., Perrichon V., Bensaddik A., Lemaux S., Bitter H., Koningsberger D. Top. Catal., 2001;17:363.

43. Iulianelli A., Basile A. Int. J. Hydrogen En., 2010;35:3170.

44. Mironova E.Y., Ermilova M.M., Orekhova N.V., Muraviev D.N., Yaroslavtsev A.B. Catal. Today, 2014;236:64.

45. Borgognoni F., Tosti S., Vadrucci M., Santucci A. Int. J. Hydrogen En., 2013;38:1430.

46. Li Y., Ding W., Jin X., Yu J., Hu X., Huang Y. Int. J. Hydrogen En., 2015;40:3528.

47. Palma V., Castaldo F., Ciambelli P., Iaquaniello G. Clean. Techn. Env. Pol., 2012;14:973.


Review

For citations:


Iulianelli A., Palma V., Bagnato G., Ruocco C., Huang Ya., Veziroğlu N., Basile A. From Bioethanol Exploitation to High Grade Hydrogen Generation: Steam Reforming Promoted by a Co-Pt Catalyst in a Pd-Based Membrane Reactor. Alternative Energy and Ecology (ISJAEE). 2020;(1-6):60-76. (In Russ.) https://doi.org/10.15518/isjaee.2020.01-06.060-076

Views: 738


ISSN 1608-8298 (Print)