Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Application of Optical Spectroscopy for Study on Process of Hydrogen Synthesis in Electric Discharge in Liquid-Phase Media

https://doi.org/10.15518/isjaee.2020.01-06.077-083

Abstract

In this work, a low-temperature plasma initiated in liquid media between electrodes has been shown to be able to decompose hydrogen containing organic molecules resulting in obtaining gaseous products with volume part of hydrogen higher than 90%. As feedstocks, organic compounds (alcohols, esters) as well as direct water-hydrogen emulsions obtained by ultrasonic treatment are used. It is shown that hydrogen productivity from emulsions is not less than that from individual substances.

Optical spectroscopy is used to confirm the formation of atomic hydrogen in the reactions of plasma decomposition of liquids. The measurement of the amount of the gas mixture formed during the decomposition of organic liquids shows that the output is highly dependent on the discharge current, and also on the volume of the discharge, which can vary depending on the distance between the electrodes in the reaction chamber. In current experiments, the discharge current is from 4A to 8A, the discharge voltage depending on the type of liquid is 30-45 V. It is shown that this is an energy-efficient method for the conversion of liquid-phase compounds, stimulated by a thermally nonequilibrium plasma producing active particles: excited molecules and radicals, which allows one to initiate chain reactions, including energy-branched ones, and thereby significantly accelerate the process of liquid conversion and lower the temperature at which such a conversion can occur.

About the Author

N. A. Bulychev
P.N. Lebedev Physical Institute of RAS; Moscow Aviation Institute (National Research University)
Russian Federation

Nikolay Bulychev, D.Sc. in Chemistry, Chief Researcher, P.N. Lebedev Physics Institute; Professor of Physical Chemistry Department of Moscow Aviation Institute

53 Leninsky Ave., 119991, Moscow; 

4 Volokolamskoe Drive, Moscow, 125993

 



References

1. Gusev A.L. Vesiroglu, T.N. et al. Centennial Memorandum of November 13, 2006 to the Heads of the Group of Eight (Stoletniy memorandum ot 13 noyabrya 2006 goda Glavam Bol'shoy vos'merki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2007;(3):11 (in Russ.).

2. Gusev A.L. The main environmental problems of the Nizhny Novgorod region and the transition to a hydrogen economy (Osnovnyye ekologicheskiye problemy Nizhegorodskoy oblasti i puti perekhoda k vodorodnoy ekonomike). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2006;(1):13 (in Russ.).

3. Ilkaev R.I., Trutnev Y.A., Gusev A.L., Kijek J.C., Hampton M.D., Scherbak Y.P. Justification for Nomination of prof. Dr. T. Nejat Veziroglu for Nobel Prize in Economics. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2000;(1):4–5.

4. Bulychev N.A., Kazaryan M.A., Gridneva E.S., Murav’ev E.N., Solinov V.F., Koshelev K.K., Kosheleva O.K., Sachkov V.I. Chen S.G. Plasma discharge with surround glow in the liquid phase under the impact of ultrasound. Bull. Lebedev Phys. Inst., 2012;39(7):214–220.

5. Klassen N., Krivko O., Kedrov V.V., Shmurak S.Z., Kiselev A.P., Shmyt’ko I.M., Kudrenko E.A., Shekhtman A.A., Bazhenov A.V., Fursova T.N., Abramov V.O., Bulychev N.A., Kisterev E.V. Laser and electric arc synthesis of nanocrystalline scintillators. IEEE Trans. Nucl. Sci., 2010;57(3):1377–1381.

6. Bulychev N.A., Kazaryan M.A., Chaikov L.L., Burkhanov I.S., Krasovskii V.I. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles. Bull. Lebedev Phys. Inst., 2014;41(9):264–268.

7. Burkhanov I.S., Chaikov L.L., Bulychev N.A., Kazaryan M.A., Krasovskii V.I. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study. Bull. Lebedev Phys. Inst., 2014;41(10):297–304.

8. Ivanov A.V., Nikiforov V.N., Shevchenko S.V., Timoshenko V.Yu., Pryadun V.V., Bulychev N.A., Bychenko A.B., Kazaryan M.A. Properties of metal oxide nanoparticles prepared by plasma discharge in water with ultrasonic cavitation. Int. J. Nanotechnol., 2017;14(7/8):618–626.

9. Bulychev N.A., Kazaryan M.A., Averyushkin A.S., Chernov A.A., Gusev A.L. Hydrogen Production by Low-Temperature Plasma Decomposition of Liquids. International Journal of Hydrogen Energy, 2017; (42):20934–20938.

10. Bulychev N.A., Kazaryan M.A., Nikoforov V.N., Shevchenko S.N., Yakunin V.G., Timoshenko V.Yu., Bychenko A.B., Sredin V.G. Peculiarities of Metal Oxide Nanoparticles Obtained in Acoustoplasma Discharge. J. Tech. Phys. Lett., 2016;42(9):105–110.

11. Bulychev N.A., Kirichenko M.N., Kazaryan M.A. Obtaining of Hydrogen in Acoustoplasma Discharge from Direct Water-Hydrocarbon Emulsions (Polucheniye vodoroda v akustoplazmennom razryade iz pryamykh vodno-uglevodorodnykh emul'siy). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2018;17;63–69 (in Russ.).

12. Bulychev N.A., Kazaryan M.A., Ethiraj A., Chaikov L.L. Plasma Discharge in Liquid Phase Media under Ultrasonic Cavitation as a Technique for Synthesizing Gaseous Hydrogen. Bull. Lebedev Phys. Inst., 2018;45(9):263–266.

13. Formalev V.F., Kolesnik S.A., Garibyan B.A. Heat transfer with absorption in anisotropic thermal Protection of high-temperature products. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2019;86(5):35–49.

14. Formalev V.F., Kolesnik S.A., Garibyan B.A. Mathematical modeling of heat transfer in anisotropic plate with internal sinks. Computational Mechanics and Modern Applied Software Systems (CMMASS’2019) AIP Conf. Proc., 2019;(2181);020003.

15. Formalev V.F., Kolesnik S.A. On Thermal Solitons during Wave Heat Transfer in Restricted Areas. High Temperature, 2019;57(4):498–502.

16. Formalev V.F., Kolesnik S.A. Heat Transfer in a Half-Space with Transversal Anisotropy Under the Action of a Lumped Heat Source. Journal of Engineering Physics and Thermophysics, 2019;92(1):52–59.

17. Formalev V.F., Kartashov É.M., Kolesnik S.A. Simulation of Nonequilibrium Heat Transfer in an Anisotropic Semispace Under the Action of a Point Heat Source. Journal of Engineering Physics and Thermophysics, 2019; 92(6):1537–1547.

18. Ioni Yu.V., Tkachev S.V., Bulychev N.A., Gubin S.P. Preparation of Finely Dispersed Nanographite. Inorganic Materials, 2011;47(6):597–602.

19. Bulychev N.A., Kuznetsova E.L., Bodryshev V.V., Rabinskiy L.N. Nanotechnological Aspects of Temperature-Dependent Decomposition of Polymer Solutions. Nanoscience and Technology. An International Journal, 2018; 9(2);91–97.

20. Nikiforov V.N., Bulychev N.A., Rzhevskii V.V. Elastic properties of HTSC ceramics. Bull. Lebedev Phys. Inst., 2016;43(2);74–79.

21. Ganiev R.F., Bulychev N.A., Fomin V.N., Arutyunov I.A., Eisenbach C.D., Zubov V.P., Malyukova E.B. Effect of mechanical activation on surface modification in aqueous pigment disperse systems. Doklady Chemistry, 2006;(407);54–56.

22. Bulychev N.A., Kisterev E.V., Arutunov I.A., Zubov V.P. Ultrasonic Treatment Assisted Surface Modification of Inorganic and Organic Pigments in Aqueous Dispersions. Journal of the Balkan Tribological Association, 2008;1(14):30–39.

23. Bulychev N., Dervaux B., Dirnberger K., Zubov V., Du Prez F.E., Eisenbach C.D. Structure of Adsorption Layers of Amphiphilic Copolymers on Inorganic or Organic Particle Surfaces. Macromol. Chem. Phys., 2010;9(211);971–977.

24. Rudnev A.V., Vanifatova N.G., Dzherayan T.G., Lazareva E.V., Bulychev N.A. Study of stability and dispersion composition of calcium hydroxyapatite in aqueous suspensions by capillary zone electrophoresis. Russian Journal of Analytical Chemistry, 2013;68(8):700.

25. Kirilina Yu.O., Bakeeva I.V., Bulychev N.A., Zubov V.P. Organic-inorganic hybrid hydrogels based on linear poly(N-vinylpyrrolidone) and products of hydrolytic polycondensation of tetramethoxysilane. Polymer Science Series B, 2009;51(3–4):135.

26. Gusev A.L., Kazaryan M.A. Nano-composites for Hydrogen Membranes and Fuel Cells. BayerMaterialScience (BMS)&The International Science and Technology Center (ISTC) Research Conference, Moscow, Russia, 23–24 January, 2007; pp. 22–23.

27. Gusev A.L., Bobrova A.A., Kazaryan M.A. Physico-chemical aspects of the use of carbon and porous glass membranes with a modified surface for the selection of oxygen and hydrogen from a gas mixture containing chlorine (Fiziko-khimicheskiye aspekty primeneniya uglerodnykh i poristykh steklyannykh membran s modifitsirovannoy poverkhnost'yu dlya selektsii kisloroda i vodoroda iz gazovoy smesi, soderzhashchey khlor). Sbornik materialov XII Mezhdunarodnoy Nauchnoy Konferentsii «Fizikokhimicheskiye protsessy pri selektsii atomov i molekul v lazernykh, plazmennykh i nanotekhnologiyakh», posvyashchennaya 100-letiyu so dnya rozhdeniya akademika I.K. Kikoina. Ed. V.E. Cherkovets. March, 31 – April, 4, 2008. Zvenigorod. TSNIIATOMINFORM, Troitsk, GNTS RF TRINITI, 2008;(110):64 (in Russ.).

28. Gusev A.L. Cleaning system for corrosive gases and hydrogen. Chemical and Petroleum Engineering, 2009;45(9–10);640.

29. Gusev A.L., Kazaryan M.A., Manufacture Nano-composites Membranes for clearing Chlorine. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2007;(4):200–201 (in Russ.).

30. Gusev A.L., Dyadyuchenko Yu.P., Chertov V.M. Economic, energy, environmental and geopolitical security of Russia in the 21st century. Does Russia Need Hydrogen Energy? Economics, Ecology and Society of Russia in the 21st Century (Ekonomicheskaya, energeticheskaya, ekologicheskaya i geopoliticheskaya bezopasnost' Rossii v 21 veke. Nuzhna li Rossii Vodorodnaya energetika? Ekonomika, ekologiya i obshchestvo Rossii v 21-m stoletii). Trudy 4-oy Mezhdunarodnoy nauchno-prakticheskoy konferentsii. St. Petersburg, Nestor, 2002; p. 400 (in Russ.).


Review

For citations:


Bulychev N.A. Application of Optical Spectroscopy for Study on Process of Hydrogen Synthesis in Electric Discharge in Liquid-Phase Media. Alternative Energy and Ecology (ISJAEE). 2020;(1-6):77-83. (In Russ.) https://doi.org/10.15518/isjaee.2020.01-06.077-083

Views: 778


ISSN 1608-8298 (Print)