

Study on the Carbon Black Stability During Cycling in Galvanostatic Mode
https://doi.org/10.15518/isjaee.2020.01-06.84-92
Abstract
Nowadays interest in supercapacitors as energy storage devices for microelectronics is growing. The development of energy storage systems is related to the development of technologies for producing new materials, in particular the new porous carbon materials. The attraction of these materials is due to the unique combination of chemical and physical properties of carbon, namely: high electrical conductivity; developed specific surface area; corrosion resistance; thermal stability; controlled porous structure; operational decisions and a possibility of use as a part of composite materials; high purity; relatively low cost of the final product.
In this work, we have obtained an experimental sample of superconducting carbon black with the necessary physical and chemical properties by thermal-gas-chemical processing of carbon black. One of the most common activated carbons used in the supercapacitors production – Norit DLC Supra 30 was chosen as the object for comparison.
The paper presents the results of experimental studies of the porous structure parameters as well as the electrochemical properties of the experimental superconducting highly porous carbon black during cycling in the galvanostatic mode in a solution of sulfuric acid (3.55 M H2SO4). Moreover, it provides a comparative assessment of the porous structure parameters and distribution of the pores according to the size of the research objects – VPU TK-7 and Norit DLC Supra 30. We have found that the experimental sample of the highly porous superconducting carbon black VPU TK-7 has higher stability and specific capacity indicators compared with the existing commercial Norit DLC Supra 30 carbon material sample which has a narrower pore size distribution. Apparently, this might be related to its chemical purity and synthesis conditions, due to which the optimal structural and textural properties are formed. Further studies will determine the conditions for the targeted synthesis of special domestic carbon materials for various electrochemical systems.
About the Authors
A. N. VoropayRussian Federation
Aleksandr Voropay, Ph.D. in Chemistry, Project Director, CJSC Technocomplekt
10а Shkol’naya Str., Dubna, Moscow Reg., 141981; 19 Universitetskaya Str., Moscow Reg., 141982, Dubna, Russia
Yu. V. Surovikin
Russian Federation
Yuri Surovikin, Ph.D. in Engineering, Head of Laboratory
54 Neftezavodskaya Str., Omsk, 644040, Russia
A. V. Lavrenov
Russian Federation
Alexander Lavrenov, D.Sc. in Chemistry, Director
54 Neftezavodskaya Str., Omsk, 644040, Russia
I. V. Rezanov
Russian Federation
Ilya Rezanov, Researcher
54 Neftezavodskaya Str., Omsk, 644040, Russia
M. N. Ilyina
Russian Federation
Maria Ilyina, Student, Engineer at “Ion” LTD
References
1. Lin Z., Goikolea E., Balducci A., Naoi K., Taberna P.-L., Salanne M., Yushin G., Simon P. Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 2018;1:1–18 (in Eng.).
2. Simon P., Gogotsi Yu. Materials for electrochemical capacitors. Nature Materials, 2008;7:845–854 (in Eng.).
3. Frackowiak E., Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001;39(11):937–950 (in Eng.).
4. Pandolfo A.G., Hollenkamp A.F. Carbon properties and their role in supercapacitors. J. of Power Sources, 2006;157(1):11–27 (in Eng.).
5. Alar J., Heisi K., Enn L. Effect of ball-milling technology on pore structure and electrochemical properties of activated carbon. Carbon, 2007;45(6):1226–1233 (in Eng.).
6. Muzaffara A., Ahameda M.B., Deshmukha K., Thirumalai J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications, Renew. Renewable and Sustainable Energy Reviews, 2019;101:123–145 (in Eng.).
7. Desyatov A.V., Kolesnikov V.A., Kryukov A.Yu., Milyutina A.D., Kolesnikov A.V. Investigation of the electrochemical behavior of prototype energy storage devices with carbon electrodes (Teoreticheskiye osnovy traditsionnoy tekhnologii). Theoretical Foundations of General Technologies, 2016;50(6):645–656 (in Russ.).
8. Ike I., Sigalas I., Iyuke S., Ozoemena K. The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active ElectrolyteEnhanced Supercapacitors: Insights from Modeling and Simulation. J. Power Sources,2015;273:64–77 (in Eng.).
9. Devillers N, Jemei S, Péra M-C, Bienaimé D, Gustin F. Electrolytes for Electrochemical Supercapacitors. J. Power Sources, 2014; 246: 596–608 (in Eng.).
10. González A., Goikolea E., Barrena J.A., Mysyk R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev, 2011;58:1189–1206 (in Eng.).
11. Surovikin Yu.V., Shaitanov A.G., Rezanov I.V., Syryeva A.V. Thermogasochemical modification of carbon black: structure and properties (Termogazokhimicheskaya modifikatsiya tekhnicheskogo ugleroda: struktura i svoystva kollektivnaya monografiya). Technological Combustion (Tekhnologicheskoye goreniye): Collective Monograph / Ed. ed. Acad. CM. Aldoshina, Corr. RAS M.I. Alymova. Ch. 7. M.: Publishing House of the Russian Academy of Sciences, 2018; pp. 161–191 (in Russ.).
12. Gruber T., Zerda T., Gerspacher M. Raman studies of heat-treated carbon blacks. Carbon, 1994;32:1377–1382 (in Eng.).
13. Pawlyta M., Rouzaud J.-N., Duber S. Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information. Carbon, 2015;84:479–490 (in Eng.).
14. Wang M.-Х. Еlectrolyte fuel cells using steam etching. Mater. Chem. Phys, 2010;123:761–766 (in Eng.).
15. Pantea D. Electrical conductivity of conductive carbon blacks: Influence of surface chemistry and topology. Appl. Surf. Sci, 2003;217:181–193 (in Eng.).
16. Celzard A. Electrical conductivity of carbonaceous powders. Carbon, 2002;40:2801–2815 (in Eng.).
17. Surovikin Yu.V., Shaitanov A.G., Rezanov I.V., Syrieva A.V. Formation the properties of carbon black particles by gas-phase thermochemical modification. Inorganic Materials: Applied Research, 2019;10(2):479–494 (in Eng.).
18. Dollimore D., Heal G.R. An improved method for the calculation of pore size distribution from adsorption data. J. Appl. Chem, 1964;14:109–114 (in Eng.).
19. Puzynin A.V., Samarov A.V., Voropay A.N., Kozlov A.P., Barnakov Ch.N., Ismagilov Z.R. Use of highly porous carbon materials filled with metal hydroxide as electrodes of a supercapacitor (Ispol'zovaniye vysokoporistykh uglerodnykh materialov, napolnennykh gidroksidom metalla v kachestve elektrodov superkondensatora). Bulletin Kemerovo State University (Vestnik Kemerovskogo gosudarstvennogo universiteta), 2014;3:238–241 (in Russ.).
20. Voropay A.N., Surovikin Yu.V., Rezanov I.V. Investigation of the electrochemical behavior of an ionic liquid with porous carbon materials based on carbon black (Issledovaniye elektrokhimicheskogo povedeniya ionnoy zhidkosti s poristymi uglerodnymi materialami na osnove tekhnicheskogo ugleroda). Dynamics of systems, mechanisms and machines (Dinamika sistem, mekhanizmov i mashin), 2018;6:165–170 (in Russ.).
21. Zakharov Yu.A. Voropay A.N., Fedorova N.M., Pugachev V.M., Puzynin A.V., Barnakov Ch.N., Ismagilov Z.R., Manina T.S. Highly porous carbon materials filled with nickel hydroxide nanoparticles; synthesis, study, application in electrochemistry. Eurasian Chemico-Technological Journal, 2015;17:187–191 (in Eng.).
22. Zakharov Yu.A., Ismagilov Z.R., Voropai A.N., Manina T.S., Barnakov Ch.N., Samarov A.V., Pugachev V.M., Kolmykov R.P., Dodonov V.G. Nanostructured composites based on porous carbon matrices filled with nickel hydroxide crystallites. Inorganic Materials, 2015;51(4):405–411 (in Eng.).
Review
For citations:
Voropay A.N., Surovikin Yu.V., Lavrenov A.V., Rezanov I.V., Ilyina M.N. Study on the Carbon Black Stability During Cycling in Galvanostatic Mode. Alternative Energy and Ecology (ISJAEE). 2020;(1-6):84-92. (In Russ.) https://doi.org/10.15518/isjaee.2020.01-06.84-92