

Experimental Studies on Process of Hydrogen Synthesis in Intensive Hydrodynamic Cavitation in Liquid Hydrocarbons
https://doi.org/10.15518/isjaee.2020.07-18.80-86
Abstract
About the Author
N. A. BulychevRussian Federation
Nikolay Bulychev, D.Sc. in Chemistry
53 Leninsky Av., Moscow, 119991, Russia
4 Volokolamskoe Drive, Moscow, 125993, Russia
References
1. Galimov E.M. Possibility of Natural Diamond Synthesisunder Conditions of Cavitation Occurring in a Fast-moving Magmatic Melt. Nature, 1973;243:389.
2. Galimov E.M., Kudin A.M., Fisenko A.V., Bykov I.V., Skorobogatskii V.N., Bondarev O.L., Zarubin B.G., Strazdovskii V.V., Barinov A.Yu., Plotnichenko V.G., Aronin A.S.Experimental corroboration of the synthesis of diamond in the cavitation process. Doklady Physics, 2004;49(3):150–153.
3. Voropaev S.A.,Shkinev V.M., Dnestrovskii A.Y., Ponomareva E.A., Spivakov B.Y., Galimov E.M., Aronin A.S., Bondarev O.L., Strazdovskii V.V., Skorobogatskii V.N., Eliseev A.A.Synthesis of diamondlike nanoparticles under cavitation in toluene. Doklady Physics, 2012;57(10):373–377.
4. Formalev V.F., Kolesnik S.A. On Thermal Solitons during Wave Heat Transfer in Restricted Areas. High Temperature, 2019;57(4):498–502.
5. Formalev V.F., Kolesnik S.A. Heat Transfer in a Half-Space with Transversal Anisotropy Under the Action of a Lumped Heat Source. Journal of Engineering Physics and Thermophysics, 2019;92(1):52–59.
6. Formalev V.F., Kolesnik S.A., Garibyan B.A. Mathematical modeling of heat transfer in anisotropic plate with internal sinks. Computational Mechanics and Modern Applied Software Systems (CMMASS’2019) AIP Conf. Proc., 2019;(2181):020003.
7. Formalev V.F., Kartashov É.M., Kolesnik S.A. Simulation of Nonequilibrium Heat Transfer in an Anisotropic Semispace Under the Action of a Point Heat Source. Journal of Engineering Physics and Thermophysics, 2019;92(6):1537–1547.
8. Gidaspov V.Y., Golubev V.K., Severina N.S. A software package for simulation of unsteady flows of the reacting gas in the channel. Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 2016;9(3):94–104.
9. Gidaspov V.Y., Severina N.S. Numerical Simulation of the Detonation of a Propane-Air Mixture, Taking Irreversible Chemical Reactions into Account. High Temperature, 2017;55(5):777–781.
10. Gidaspov V.Y., Moskalenko O.A., Severina N.S. Numerical Study of the Influence of Water Droplets on the Structure of a Detonation Wave in a Hydrogen–Air Fuel Mixture. High Temperature, 2018;56(5):751–757.
11. Gidaspov V.Y., Severina N.S. Modeling of detonation of metal-gas combustible mixtures in highspeed flow behind a shock wave. High Temperature, 2019;57(4):514–524.
12. Borovik I.N., Strokach E.A., Severina N.S. Influence of the turbulent Prandtl number on numerical simulation reaction flow. AIP Conference Proceedings, 2019;2181(1):020029.
13. Severina N.S. Software complex for solving the different tasks of physical gas dynamics. Periodico Tche Quimica, 2019;16(32):424–436.
14. Voropaev S.A., Dushenko N.V., Shkinev V.M., Ponomareva E.A., Galimov E.M., Aronin A.S., Skorobogatskii V.N., Bondarev O.L., Strazdovskii V.V., Eliseev A.A. Photoluminescence of nitrogen-doped nanodiamonds of cavitation synthesis. Doklady Physics, 2014;59(12):564–567.
15. Bulychev N.A., Kazaryan M.A., Averyushkin A.S., Chernov A.A., Gusev A.L. Hydrogen Production by Low-Temperature Plasma Decomposition of Liquids. International Journal of Hydrogen Energy, 2017;(42):20934–20938.
16. Bulychev N.A., Kazaryan M.A., Ethiraj A., Chaikov L.L. Plasma Discharge in Liquid Phase Media under Ultrasonic Cavitation as a Technique for Synthesizing Gaseous Hydrogen. Bull. Lebedev Phys. Inst., 2018;45(9):263–266.
17. Bulychev N.A. On the Hydrogen Production during the Discharge in a Two-Phase Vapor-Liquid Flow. Bulletin of the Lebedev Physics Institute, 2019;46(7):219–221.
18. Bulychev N.A., Kazaryan M.A., Gridneva E.S., Murav’ev E.N., Solinov V.F., Koshelev K.K., Kosheleva O.K., Sachkov V.I. Chen S.G. Plasma discharge with surround glow in the liquid phase under the impact of ultrasound. Bull. Lebedev Phys. Inst., 2012;39(7):214–220.
19. Klassen N., Krivko O., Kedrov V.V., Shmurak S.Z., Kiselev A.P., Shmyt’ko I.M., Kudrenko E.A., Shekhtman A.A., Bazhenov A.V., Fursova T.N., Abramov V.O., Bulychev N.A., Kisterev E.V. Laser and electric arc synthesis of nanocrystalline scintillators. IEEE Trans. Nucl. Sci., 2010;57(3):1377–1381.
20. Burkhanov I.S., Chaikov L.L., Bulychev N.A., Kazaryan M.A., Krasovskii V.I. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study. Bull. Lebedev Phys. Inst., 2014;41(10):297–304.
21. Bulychev N.A., Kazaryan M.A., Kirichenko M.N., Garibyan B.A., Morozova E.A., Chernov A.A. Obtaining of hydrogen in acoustoplasma discharge in liquids. Proceedings of SPIE, 2018;10614:061411
Review
For citations:
Bulychev N.A. Experimental Studies on Process of Hydrogen Synthesis in Intensive Hydrodynamic Cavitation in Liquid Hydrocarbons. Alternative Energy and Ecology (ISJAEE). 2020;(7-18):80-86. (In Russ.) https://doi.org/10.15518/isjaee.2020.07-18.80-86