Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Biohydrogen Production in the Two-Stage Process of Anaerobic Bioconversion of Organic Substance of Liquid Organic Waste with Recycle of Digister Effluent

https://doi.org/10.15518/isjaee.2020.07-18.87-100

Abstract

At present, hydrogen energy is gaining immense popularity in the world due to the problem of depletion of nonrenewable energy sources, hydrocarbons, and environmental pollution caused by their growing consumption. Compared with electro- or thermochemical processes, the biological production of hydrogen has a number of advantages associated with greater environmental friendliness and low cost. Of particular interest is the dark process of producing hydrogen-containing biogas in the processing of organic waste under anaerobic conditions which allows you to take advantage of both energy production and solving the problem of recycling organic waste. This paper considers the production of biohydrogen in a two-stage process of anaerobic bioconversion of organic matter of liquid organic waste. Moreover, experimental studies were carried out continuously in reactors with increased volume. The article describes an experimental setup for investigating a two-stage process of anaerobic bioconversion of organic matter of liquid organic waste and setting up an experiment to study the effect of recycling the effluent of methantenk into an anaerobic bioreactor for the production of biohydrogen. The obtained experimental data on the specific yield of biohydrogen are consistent with the data obtained by other authors. The average specific yield of biohydrogen (per kilogram of initial organic matter) during recycling of the methantenk effluent increased by 4 % (from 0.1046 to 0.1087 m3 / (day * kg of OMin)). In addition, recycling of the methantenk effluent to the biohydrogen production reactor during two-stage anaerobic bioconversion allows us to reduce fluctuations in the output of biohydrogen from the reactor. At the same time, there is no methanogenic activity in the anaerobic bioreactor for the production of biohydrogen. The self-stabilizing pH level in the anaerobic bioreactor for producing biohydrogen is less than 4.5 (3.94 without effluent recirculation and 3.88 with recirculation), however, there is no inhibition of hydrogen formation. Thus, the use of recirculation of the methantenk effluent into the anaerobic bioreactor for producing biohydrogen can enhance the efficiency of the two-stage anaerobic bioconversion of organic waste while maintaining the stability of the process.

About the Authors

A. A. Kovalev
Federal Scientific Agroengineering Centre VIM
Russian Federation

Andrey Kovalev, PhD in Engineering, Senior Researcher at the Laboratory of Bioenergy and Supercritical Technologies

SPIN: 4267-3026

Researcher ID: F-7045-2017 

Scopus Author ID: 57205285134 

5 1st Irkutskiy proezd, Moscow, 109428, Russia



D. A. Kovalev
Federal Scientific Agroengineering Centre VIM
Russian Federation

Dmitry  Kovalev,PhD in Engineering, Head of the Laboratory of Bioenergy and Supercritical Technologies

SPIN: 6513-5547
Researcher ID: K-4810-2015

5 1st Irkutskiy proezd, Moscow, 109428, Russia



Yu. V. Litti 2
Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences
Russian Federation
Yuriy  Litti, PhD in Biology, Senior Researcher at Laboratory of Microbiology of Anthropogenic 

Habitats

SPIN: 1487-7611
Researcher ID: C-4945-2014

Bld. 2, 33 Leninskiy Ave., Moscow, 119071, Russia 



I. V. Katraeva
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Inna Katraeva, PhD in Engineering, Associate Professor of the Chair of Water Supply, Sewage, Engineering Ecology and Chemistry

SPIN: 3369-3091
Researcher ID: O-4715-2016

65 Il'inskaya Str., Nizhny Novgorod, 603950, Russia 



References

1. Nozhevnikova A.N., Kallistova A.Yu., Litti Yu.V., Kevbrina M.V. Biotechnology and microbiology of anaerobic processing of organic municipal waste (Biotekhnologiya i mikrobiologiya anaerobnoipererabotki organicheskikh kommunal'nykh otkhodov). Moscow: Universitetskaya kniga Publ., 2016; 320 p. (in Russ.).

2. Dli M.I., Baliabina A.A., Drozdova N.V. Hydrogen energy and development prospects (Vodorodnaya energetika i perspektivy ee razvitiya). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(22):37–41. https://doi.org/10.15518/isjaee.2015.22.004 (in Russ.).

3. Ramenskiy A.Y. Hydrogen as a fuel: the object and the purpose of standardization (Vodorod v kachestve topliva: predmet i tselistandartizatsii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(1):33–44. https://doi.org/10.15518/isjaee.2015.01.03 (in Russ.).

4. Grinko V.V., Bezhok V.S., Lapin N.V., Vyatkin A.F. Low-temperature water-vapor conversion of ethanol on the ni/zno catalyst in a microchannel reactor (Nizkotemperaturnaya vodno-parovayakonversiya etanola na katalizatore Ni/ZnO v mikrokanal''nom reaktore). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(15–18):112–121. https://doi.org/10.15518/isjaee.2016.15-18.112-121 (in Russ.).

5. Kothari R., Buddhi D., Sawhney R.L. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable & Sustainable Energy Reviews, 2008;12:553–563.

6. Dubinin A.M., Sheklein S.E., Tuponogov V.G., Ershov M.I. Mini CHP based on the electrochemical generator and impeded fluidized bed reactor for methane steam reforming (Mini-TETS na baze elektrokhimicheskogo generatora i konvertora metana s zatormozhennympsevdoozhizhennym sloem). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2017;(19–21):95– 105. https://doi.org/10.15518/isjaee.2017.19-21.095-105 (in Russ.).

7. Abbasi T., Abbasi S.A. Renewable’ hydrogen: Prospects and challenges. Renewable & Sustainable Energy Reviews, 2011;(15):3034–3040 (in Russ.).

8. Contrerasa A., Possob F., Veziroglu Т.N. Modeling and simulation of the production of hydrogen using hydroelectricity in Venezuela. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2018;(22–24):88–95. https://doi.org/10.15518/isjaee.2018.22-24.088-095

9. Aminov R.Z., Bairamov A.N. Performance evaluation of hydrogen production on base of the off-peak electricity of atomic power station (Otsenka effektivnosti polucheniya vodoroda na baze vnepikovoi elektroenergii AES). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(5–6):59–70. https://doi.org/10.15518/isjaee.2016.05-06.006 (in Russ.).

10. Khan M.A. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy, 2018;129B:754–768.

11. Golub N.B. Increase of hydrogen output due to combined conversion of different origin raw materials (Povyshenievykhoda vodoroda pri sovmestnoi konversii syr''ya raznogo proiskhozhdeniya). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;(19):53–57 (in Russ.).

12. Golub N.B. Influence of substrate concentration on the formation of hydrogen during fermentation (Vliyaniekontsentratsii substrata na obrazovanie vodoroda v protsessefermentaTsII). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;(15):107–112 (in Russ.).

13. Marone A.Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. International Journal of Hydrogen Energy, 2017;42(3):1609–1621.

14. Kargi F., Pamukoglu M.Y. Dark fermentation of ground wheat starch for bio-hydrogen production by fedbatch operation. International Journal of Hydrogen Energy, 2009;34(7):2940–2946.

15. Bundhoo M.A.Z., Mohee R. Inhibition of dark fermentative bio-hydrogen production: A review. International Journal of Hydrogen Energy, 2016;41:6713–6733.

16. Holladay J.D., Hu J., King D.L., Wang Y. An overview of hydrogen production technologies. Catalysis Today, 2009;139:244–260

17. Hawkes F., Hussy I., Kyazze G., Dinsdale R., Hawkes D. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. International Journal of Hydrogen Energy, 2007;32:172–184

18. Kothari R., Kumar V., Pathak V.V., Ahmad S., Aoyi O., Tyagi V.V. A critical review on factors influencing fermentative hydrogen production. Frontiers In Bioscience-Landmark, 2017;22:1195–1220.

19. Wang J., Wan W. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 2009;34(2):799–811.

20. Van Ginkel S.W., Oh S.., Logan B.E. Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 2005;30(15):1535–1542. https://doi.org/10.1016/j.ijhydene.2004.09.017

21. Ren N., Li J., Li B., Wang Y., . Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy, 2006;31:2147–2157.

22. Li D., Chen H. Biological hydrogen production from steam exploded straw by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy, 2007;32:1742–1748.

23. Venkata Mohan S., Lalit Babu V., Sarma P.N. Anaerobic biohydrogen production from diary wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzyme and Microbial Technology, 2007;41:506–515.

24. Salem A.H. et al. Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. International Journal of Hydrogen Energy, 2018;43(10):4856–4865.

25. Keskin T. et al. Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes. International Journal of Hydrogen Energy, 2018;43(23):10666–10677.

26. Li C.L., Fang H.H.P. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 2007;37:1–39.

27. Stanislaus M.S., Zhang N., Yuan Y., Zheng H., Zhao Ch., Hu X., Zhu Q., Yang Y. Improvement of Biohydrogen Production by Optimization of Pretreatment Method and Substrate to Inoculum Ratio from Microalgal Biomass and Digested Sludge. Renewable Energy, 2018;127:670–677.

28. Sinha P., Gaurav K., Roy S., Balachandar G., Das D. Improvement of Biohydrogen Production with Novel Augmentation Strategy Using Different Organic Residues (Povyshenievyrabotkibiovodoroda s pomoshch'yunovoistrategiiaugmentatsii s ispol'zovaniemrazlichnykhorganicheskikhostatkov). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;(34–36):26–40. (in Russ.); https://doi.org/10.15518/isjaee.2019.34-36.026-040

29. Koutrouli E.C., Kalfas H., Gavala H.N., Skiadas I.V., Stamatelatou K., Lyberatos G. Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresource Technology, 2009;100:3718–3723.

30. Carrillo-Reyes J., Albarrán-Contreras B.A., Buitrón G. Influence of Added Nutrients and Substrate Concentration in Biohydrogen Production from Winery Wastewaters Coupled to Methane Production. Applied Biochemistry and Biotechnology, 2019;187(1):140–151.

31. Lin C., Chang R-C. Fermentative hydrogen production at ambient. International Journal of Hydrogen Energy, 2004;29:715–720. http://dx.doi.org/10.1016/j.ijhydene.2003.09.002.

32. Collet C., Adler N., Schwitzguébel J.P., Péringer P. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. International Journal of Hydrogen Energy, 2004;29:1479–1485. http://dx.doi.org/10.1016/j.ijhydene.2004.02.009.

33. Jayalakshmi S., Joseph K., Sukumaran V. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. International Journal of Hydrogen Energy, 2009;34:8854–8858. http://dx.doi.org/10.1016/j.ijhydene.2009.08.048.

34. Nathao C., Sirisukpoka U., Pisutpaisal N. Production of hydrogen and methane by one and two stage fermentation of food waste. International Journal of Hydrogen Energy, 2013;38:15764–15769. http://dx.doi.org/10.1016/j.ijhydene.2013.05.047

35. Łukajtis R., Hołowacz I., Kucharska K., Glinka M., Rybarczyk P., Przyjazny A.,Kamiński M. Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews, 2018;91:665–694. ISSN 1364-0321, https://doi.org/10.1016/j.rser.2018.04.043.

36. Liu I.C., Whang L.-M., Ren W.-J., Lin P.-Y. The effect of pH on the production of biohydrogen by clostridia: Thermodynamic and metabolic considerations. International Journal of Hydrogen Energy, 2011;36:439–449.

37. Ruggeri, B. BioH2 & BioCH4 Through Anaerobic Digestion / B. Ruggeri, T. Tommasi, S. Sanfilippo.– London: Springer-Verlag, 2015.


Review

For citations:


Kovalev A.A., Kovalev D.A., Litti 2 Yu.V., Katraeva I.V. Biohydrogen Production in the Two-Stage Process of Anaerobic Bioconversion of Organic Substance of Liquid Organic Waste with Recycle of Digister Effluent. Alternative Energy and Ecology (ISJAEE). 2020;(7-18):87-100. (In Russ.) https://doi.org/10.15518/isjaee.2020.07-18.87-100

Views: 894


ISSN 1608-8298 (Print)