

Research of Protective Coatings on Titanium Bipolar Plates of Hydrogen Fuel Cells with Solid Polymer Electrolyte
https://doi.org/10.15518/isjaee.2020.07-18.101-114
Abstract
The paper considers the various types of bipolar elements and materials which are used for their manufacture in fuel cell technology. They play an important role in switching individual fuel cells in a battery, and make up the largest fraction of its mass (up to 80%), which affects the specific mass power characteristics of the power system. Bipolar cells based on thin titanium foil and a corrugated duct have high mechanical strength with minimum weight, are important elements of a fuel cell battery, and their use can significantly improve the mass specific characteristics of a power system based on fuel cells with a solid polymer electrolyte and direct air supply. Protective coatings should provide low-resistance contact when switching individual fuel cells and prevent its change during prolonged operation of the fuel cell. Coating in a magnetron setup allows preliminary coatings on large surfaces to produce thin coatings with reproducible composition and properties. For research, we have used graphite and platinum targets, as well as composite graphite targets with platinum inserts in the spray zone. Using generally accepted procedures, we have studied the influence of the composition and conditions of applying composite coatings on the corrosion resistance and surface contact resistance of bipolar elements. The use of a graphite target and segments made of platinum is shown to allow obtaining protective coatings close to the requirements of technical targets for coatings in terms of corrosion resistance and surface contact resistance. Such titanium coatings have better conductive and protective properties than thin-film coatings based on platinum and thin films of gold. The production of protective coatings based on titanium carbides have a high surface resistance, and based on titanium nitride – lower protective properties. Thus, magnetron technology can be recommended as industrial for the production of bipolar elements.
About the Authors
M. A. KlimovaRussian Federation
Mariia Klimova, Postgraduate Student
14 Krasnokazarmennaya Str., Moscow, 111250, Russia
S. I. Nefedkin
Russian Federation
Sergey Nefedkin, D.Sc. in Engineering, Professor
14 Krasnokazarmennaya Str., Moscow, 111250, Russia
E. A. Kolomeytseva
Russian Federation
Elena Kolomeytseva, Postgraduate Student
14 Krasnokazarmennaya Str., Moscow, 111250, Russia
A. V. Chizhov
Russian Federation
Alexey Chizhov, M.Sc.
14 Krasnokazarmennaya Str., Moscow, 111250, Russia
R. G. Boldin
Russian Federation
Roman Boldin, M.Sc.
14 Krasnokazarmennaya Str., Moscow, 111250, Russia
S. B. Simakin
Russian Federation
Sergey Simakin, D.Sc. in Engineering, General Director
34–38 B. Ordynka Str., Moscow, 119017, Russia
A. N. Fokin
Russian Federation
Aleksander Fokin, Graduate
14 Krasnokazarmennaya Str., Moscow, 111250, Russia
References
1. Thompson S.T. Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook. Journal of Power Sources, 2018;399:304–313.
2. Lapeña-Reya N., Blancoa J.A., Ferreyraa E., Lemusa J.L., Pereira S., Serrota E. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions. International Journal of Hydrogen Energy, 2017;42:6926–6940.
3. Atkinson R.W., Hazard M.W., Rodgers J.A., Stroman R. O., Gould B. D. An Open-Cathode Fuel Cell for Atmospheric Flight. Journal of the Electrochemical Society, 2017;1646:46–54.
4. Pan Z. F., An L., Wen C.Y. Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles. Applied Energy, 2019;240:473–485.
5. Schmitz A., Tranitz M., Eccarius S., Weil A., Hebling C. Influence of cathode opening size and wetting properties of diffusion layers on the performance of airbreathing PEMFCs. J. Power Sources, 2006;154:437–447.
6. Fernández-Moreno J., Guelbenzu G., Martín A., Folgado M., Ferreira-Aparicio P., Chaparro A. A portable system powered with hydrogen and one single airbreathing PEM fuel cell. Appl. Energy, 2013;109:60–66.
7. Gadalla M., Zafar S. Analysis of a hydrogen fuel cell-PV power system for small UAV. International Journal of Hydrogen Energy, 2016;41:6422–6432.
8. Baranov I.E., Fateev V.N., Porebsky V.I., Akselkina S.V., Lyutikova E.K. Themselves saturated a portable hydrogen-air fuel cell for aviation and robotics (Samouvlazhnyayushchiisya portativnyi toplivnyi element dlya aviatsii i robototekhniki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;21(185):137–144 (in Russ.).
9. Sasmito A.P., Kurnia J.C., Shamim T., Mujumdar A.S. Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method. Appl. Energy, 2017;185:1225–1232.
10. Taherian R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 2014;265:370–390.
11. Marcinkoski J., Kopasz J.P., Benjamin T.G. Progress in the US DOE fuel cell subprogram efforts in polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2008;33:3894–3902.
12. Fukutsuka T, Yamaguchi T, Miyano SI, Matsuo Y, Sugie Y, Ogumi Z. Carbon-coated stainless steel as PEFC bipolar plate material. J. Power Sources, 2007;174(1):199–205.
13. Feng K., Shen Y., Liu D., Chu P.K., Cai X. Ni– Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2010;35(2):690–700.
14. Grigoryev S.A. Hydrogen electrochemicalsystems with solid polymer electrolyte (Elektrokhimicheskie sistemy s tverdym polimernym elektrolitom). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;10(150):8–26 (in Russ.).
15. Grigoriev I.S., Meilikhov E.Z. Handbook Physicalquantities (Spravochnik "Fizicheskie velichiny"). Moscow: Energoatomizdat Publ., 1991; 1232 p. (in Russ.).
16. Matsuura T., KatoM., Hori M. Study on metallic bipolar plate for proton exchange membrane fuel cell. J. Power Sources, 2006;161(1):74–78.
17. Hermann A., Chaudhuri T., Spagnol P. Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 2004;30:1297.
18. Tsuchiya H., Kobayashi O. Mass production cost of PEM fuel cell by learning curve. International Journal of Hydrogen Energy, 2004;29:985–990.
19. Alexeeva O.K., Fateev V.N. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis (Review) (Primenenie metoda ionnogo magnetronnogo raspyleniya dlya sinteza nanostrukturnykh katalizatorov). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;7(171):14–36 (in Russ.).
20. DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components [E-resource]. Avalable on: https://www.energy.gov/eere/fuelcells/doe-technicaltargets-polymer-electrolyte-membrane-fuel-cellcomponents (01/14/20).
21. Hentall P.L., Lakeman J.B., Mepsted G.O., Adcock P.L., Moore J.M. New materials for polymer electrolyte membrane fuel cell current collectors. J. Power Sources, 1999;80:235–41.
22. Scholta J., Rohland B., Trapp V., Focken U. Investigations on novel low-cost graphite composite bipolar plates. J. Power Sources, 1999;84:231–234.
23. Husby H., Kongstein O.E., Oedegaard A., Seland F. Carbon-polymer composite coatings for PEM fuel cell bipolar plates. International Journal of Hydrogen Energy, 2014;39(2):951–957.
24. WangW.-L., He Sh.-M., Lan Ch.-H. Protective graphite coating on metallic bipolar plates for PEMFC applications. Electrochimica Acta, 2012;62:30–35.
25. Tsuchiyaa H., Kobayashi O. Mass production cost of PEM fuel cell by learning curve. International Journal of Hydrogen Energy, 2004;29:985–990.
26. Zhang D., Du L., Guoa L., Wang Z., Zhao J., Tuan Wei-Hsing, Niiharac K. TiN coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. International Journal of Hydrogen Energy, 2011;36(15):9155–9161.
27. Duan L., Zhang D., Guo L., Wang Z. Corrosion behavior of TiN-coated titanium as bipolar plates for PEMFC by multi-arc ion plating. J. Nonferrous Metals, 2011;21(1):159–164.
28. Nefedkin S.I., Holichev O.V., Bogomolova A.S., Kiselev I.V., Sedelnikov N.G., Fatyushin A.M., Investigation of catalytic vacuum black in the electrodes low-temperature electrochemical devices. Journal of Physics: Conference Series, 2011;291(1):012003.
29. Nefedkin S.I., Korovin N.V., Gladkikh I.P., Mansurov G.N., Petrii O.A, Electrochemical properties of thinfilm Ti/Ir electrodes. Soviet Electrochemistry, 1988;24(3):371–374.
30. Nefedkin S.I., Kholichev O.V., Pavlov V.I., Bogomolova A.S., Sedel’nikov N.G., Gerasimova E.V., Dobrovol’skiiYa.A. Catalytically active platinum blacks prepared by magnetron sputtering in vacuum and their using in fuel cells with solid polymer electrolyte. Russian Journal of Electrochemistry, 2014;50(7):617–624.
31. Nefedkin S.I., Klimova M.A., Kolomeitseva E.A., Klochnev M.K., Levin E.E., Petrii O.A., Pt- and Ir –based disperse catalysts synthesizes in a magnetron for water electrolyzes with solid polymer electrolyte, Russian Journal of Electrochemistry, 2017;53(3):284–291.
Review
For citations:
Klimova M.A., Nefedkin S.I., Kolomeytseva E.A., Chizhov A.V., Boldin R.G., Simakin S.B., Fokin A.N. Research of Protective Coatings on Titanium Bipolar Plates of Hydrogen Fuel Cells with Solid Polymer Electrolyte. Alternative Energy and Ecology (ISJAEE). 2020;(7-18):101-114. (In Russ.) https://doi.org/10.15518/isjaee.2020.07-18.101-114