Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrogen-Methanol SOFCs for Transport

https://doi.org/10.15518/isjaee.2020.19-24.19-30

Abstract

The paper discusses the possibility of creating an energy plant with high-temperature solid fuel cells (SOFC) working on hydrogen-containing gas mixture (synthesis-gas) obtained in the required for the engine small volumes of liquid fuel – methanol. In this case, all problems related to the need to obtain, store and transport hydrogen are removed, as the rate of its production and consumption by the engine are equal.

The 10 kW power plant, where direct conversion of hydrogen oxidation chemical reaction energy in SOFT anode into electrical energy is based on the products of air conversion of methanol in a catalytic burner using aluminumnickel catalysts, is considered. Methanol enters the boiler-recycler to heat up to boil and evaporate, then steamedly enters the catalytic burner. There is also air heated in the boiler-recycling. At the air consumption factor of 0.5, methanol is converted with the production of synthesis-gas. Then the synthesis-gas is cooled from 988 °С to 700 °С air fed into the cathode channel. The air is heated from 20 °С to 600 °С. Synthesis gas enters. Then from the anode canal hydrogen diffusion enters the anode, where oxygen is oxidized by air fed into the cathode channel. Hydrogen oxidation products enter the anode channel. Products from the anode canal and oxygen-depleted air from the cathode canal enter the boiler-recycling, where the hydrogen, which is not entered into the anode and contained in the synthesized carbon monoxide, is oxidized. The heat of oxidation is used to heat primary air and evaporate methanol.

The physical and chemical analysis of the energy efficiency of the high-temperature fuel cell plant, which works on synthesis-gas obtained in the catalytic process directly in the car made of liquid fuel-methanol. The resulting energy is used for the electric vehicle engine. The electrical efficiency of the installation is 42.1%, which in terms of energy efficiency exceeds the level of the best modern internal combustion engines.

About the Authors

S. E. Shcheklein
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

19 Mira Str., Yekaterinburg, 620002
Tel.: +7(343)375-95-08



A. M. Dubinin
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

19 Mira Str., Yekaterinburg, 620002
Tel.: +7(343)375-95-08



References

1. Shpil'rajn E.E., Malyshenko S.P., Kuleshov G.G. Introduction to hydrogen energy (Vvedenie v vodorodnuyu energetiku). Moscow: Energoatomizdat Publ., 1984; 264 p. (in Russ.).

2. Shcheklein S.E., Dubinin A.M. Stoichiometric analysis of air oxygen consumption in modern vehicles using natural and synthetic fuels/IOP Conf. Series: 177:012020 (in Eng.).

3. Shcheklein S.E., Dubinin A.M. Analysis of nitrogen oxide emissions from modern vehicles using hydrogen or other natural and synthetic fuels in combustion chamber. International Journal of Hydrogen Energy, 2020;45(1):1151–1157 (in Eng.).

4. Shcheklein S.E., Dubinin A.M. The investigation of fuel type influence on the energy indicators of the electrochemical generator in the cogeneration unit (Issledovanie vliyaniya vida topliva na energeticheskie pokazateli elektrohimicheskogo generatora v sostave kogeneracionnoj ustanovki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2018;1618:12–22 (in Russ.).

5. Peters R., Deja R., Blum L., Pennanen J., Kiviaho J., Hakala T. Analysis of solid-oxide fuel cell system concepts with anode recycling. International Journal of Hydrogen Energy, 2013;38(16):6809–6820 (in Eng.).

6. Munc V.A., Volkova YU.V., Plotnikov N.S., Dubinin A.M. i dr. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas (Issledovanie harakteristik energeticheskoj ustanovki 5 kVt na tverdookisnyh toplivnyh elementah s parovym riformingom prirodnogo gaza). Teploenergetika, 2015;62(11):15–20 (in Russ.).

7. Halinen M., Saarinen J., Noponen M. I., Vinke C., Kiviaho J. Experimental analysis on performance and durability of SOFT demonstration unit. Fuel Cells, 2010;10(3):440 (in Eng.).

8. Weber A., Ivers-Tiffée E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004;127(1–2):273–283 (in Eng.).

9. Korovin N.V. Fuel cells and electrochemical power plants: state of development and problems (Toplivnye elementy i elektrohimicheskie energoustanovki: sostoyanie razvitiya i problem). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2004;(18)10:8–14 (in Russ.).

10. Lipilin A.S. The state and future of individual energy (Sostoyanie i budushchee individual'noj energetiki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2009;(77)9:139–152 (in Russ.).

11. Veziroglu T.N., Sahin S. 21st century’s energy: hydrogen energy system. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;46:14–27 (in Eng.).

12. Gol'cov V.A., Veziroglu T.N., Gol'cova L.F., Gusev A.L. The current state of the hydrogen economy and hydrogen transport: economy, technology (Sovremennoe sostoyanie vodorodnoj ekonomiki i vodorodnogo transporta: ekonomika, tekhnologii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2003;(S1):21–22 (in Russ.).

13. Gusev A.L., Dyaduchenko Yu.P., Chertov V.M. Do hydrogen energy in Russia need? (Nuzhna li vodorodnaya energiya v Rossii?). Ekonomika, ekologiya i obshchestvo v Rossii v XXI veke. S.-Pb: 2004; Vol. 1. (in Russ.).

14. Gusev A.L., Ismagilov Z.R. et al. Proekt MNTC No. 3937. Development of a bioethanol steam reforming fuelp producing 5m 3 of pyngas per hour for fuel-cellbased power plants (Toplivnyj processor na osnove bioetanola. Razrabotka toplivnogo processora dlya parovoj konversii bioetanola, proizvodyashchego 5 m 3 sintezgaza v chas dlya elektrostancij na osnove toplivnyh elementov) [E-resource]. Available on: http://www.istc.int/ru/project/687CE14D98BE75D5C3257543003F4C79 (04.15.2020) (in Russ.).

15. Chertov V.M., Gusev A.L. Auto-catalysts or electrochemical hydrogen generators? (Avto-katalizatory ili elektrohimicheskie generatory vodoroda?). Dragocennye metally. Dragocennye kamni, 2004;126(6):80–85 (in Russ.).

16. Gusev A.L. The main environmental problems of Nizhny Novgorod region and the way of transition to a hydrogen economy (Osnovnye ekologicheskie problemy Nizhegorodskoj oblasti i puti razvitiya vodorodnoj ekonomiki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2006;33(1):13–25 (in Russ.).

17. Babcock B.A. The Impact of US Biofuel Policies on Agricultural Price Levels and Volatilit. International Centre for Trade and Sustainable Development (ICTSD). 2011; Issue Paper No. 35: 38 (in Eng.).

18. Dubinin A.M., Shcheklein S.E. A heat electropower ministation based on both a reactor for air methane conversion and an electrochemical generator (Miniteploelektrocentral' na osnove reaktora dlya vozdushnoj konversii metana i elektrohimicheskogo generatora). Teoreticheskie osnovy himicheskoj tekhnologii, 2019;53(1):78–86 (in Russ.).

19. Shcheklein S.E., Dubinin A.M. Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator. International Journal of Energy Production and Management, 2019; 4(4):273–286 (in Eng.).

20. Shcheklein S.E., Dubinin A.M. Production of liquid fuel from wood. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM), 2019;19(4.1):409416 (in Eng.).

21. Shcheklein S.E., Dubinin A.M., Matveev A.V. Steam gasification of waste tires for the purpose of methanol production. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM), 2018;18(4.2):175–182 (in Eng.).

22. Shcheklein S.E., Dubinin A.M. Methanol production based on direct-flow gas generator and nuclear reactor. Atomic Energy, 2018;124(2):91–97 (in Eng.).

23. Olah G.A., Goeppert A., Surya Prakash G.K. Beyond oil and gas: the methanol economy. Weinheim,WILEY-VCH Verlag, 2009; 350 p. (in Eng.).

24. Baskakov A.P., Volkova Yu.V. Physics and chemical foundations of thermal processes (Fizikohimicheskie osnovy teplovyh processov). Moscow: Teplotekhni Publ., 2013; 173 p. (in Russ.).

25. Korovin N.A. Fuel cells and electrochemical power plants (Toplivnye elementy i elektrohimicheskie energoustanovki). Moscow: Izd. MEI, 2005; 278 p. (in Russ.).

26. Sobyanin V.A. High-temperature solid-oxy fuel cells and methane conversion (Vysokotemperaturnye tverdookisnye toplivnye elementy i konversiya metana). Rossijskij Himicheskij Zhurnal (Zhurnal Rossijskogo himicheskogo obshchestva im. D.I. Mendeleeva), 2003; 47(6):62–70. (in Russ.).

27. Yakovlev, B.V. Improving the efficiency of heating and heating systems (Povyshenie effektivnosti sistem teplofikacii i teplosnabzheniya). Moscow: Novosti teplosnabzheniya Publ., 2008; 448 p. (in Russ.).


Review

For citations:


Shcheklein S.E., Dubinin A.M. Hydrogen-Methanol SOFCs for Transport. Alternative Energy and Ecology (ISJAEE). 2020;(19-24):19-30. (In Russ.) https://doi.org/10.15518/isjaee.2020.19-24.19-30

Views: 359


ISSN 1608-8298 (Print)