Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Primary regulation of the current frequency in the power system by nuclear power plants based on hydrogen-thermal storage

https://doi.org/10.15518/isjaee.2021.01.002

Abstract

According to the Technical Requirements for Generating Equipment of Participants in the Wholesale Market of the Unified Energy System (UES) of Russia, "from 2016 to participate in the general primary frequency regulation (PRCF), the maneuverable characteristics of generating equipment of nuclear power plants with VVER reactors put into operation before 2009 should ensure frequency deviations guaranteed realization of the required primary power for loading up to 2% of the nominal electric power. For this, the current capacity of the reactor installation should be maintained at a level of not more than 98% of the nominal thermal power. The fulfillment of this requirement signifi- cantly reduces the installed capacity utilization factor (CUF) of reactor plant.

In addition, at present in the UES of the Russian Federation there is a tendency towards an increase in the deficit of peak and half-peak capacities. The majority of fossil fuel-fired thermal stations are switched to the half-peak mode, which negatively affects their efficiency and reliability. In addition, the rise in price of natural gas makes it more profitable to sell it abroad instead of burning at power plants. On the other hand, an increase in the share of nuclear power plants is observed in the UES, which exacerbates the problems associated with the passage of minima and maxima of the daily load in the power system, due to the economically and technically justified need to load NPPs with maximum CUF.

The authors developed an approach to solving this problem by combining NPPs with an environmentally friendly energy source - an autonomous hydrogen complex (AHC), which includes thermal batteries and an additional multi- functional steam turbine unit. The developed energy complex will allow energy to be accumulated during hours of minima load in the power system due to the electrolysis of water to produce hydrogen and oxygen, as well as the accumulation of hot water in the storage tanks. The accumulated energy can be used to generate super-nominal electrici- ty to cover the half-peak load zone in the power system. In addition, the presence of a low-power steam turbine installation will ensure uninterrupted power supply to consumers of their own needs at the NPP by using the energy of the residual heat from the reactor when the station is completely de-energized.

Based on the proposed energy complex, a method has been developed to ensure the participation of NPPs in the PRCF in an energy system with a constant CUF. To assess the effectiveness of the proposed solution, a methodology for thermodynamic analysis of the energy complex based on the combination of NPPs with AHC was developed. The dependence of the required hydrogen fuel consumption and the efficiency of using off-peak electricity on the temper- ature of the feed water supplied to the hydrogen-oxygen steam generator from the hot water tanks is constructed.

Based on the results obtained, the technical and economic efficiency of the developed energy complex is considered. The accumulated net present value was determined depending on off-peak electricity tariffs with three variants of the forecast dynamics of the half-peak electricity tariff, taking into account natural gas savings, reduced investment in NPP safety systems and the economic effect of ensuring the participation of NPPs in the PRCF with the plant load at 100%.

About the Authors

A. Egorov
Saratov State Technical University named after Gagarin Yu.A.
Russian Federation

Aleksandr Egorov, Ph.D. in Engineering, Senior Researcher

st. Polytechnic, 77, Saratov, 410054



V. Yurin
Federal State Budgetary Institution of Science Saratov Scientific Center of the Russian Academy of Sciences
Russian Federation

Valeriy Yurin, Ph.D. in Engineering, Researcher

st. Rabochaya 24, Saratov, 410028



References

1. Shpil'rain, EH.EH. Vvedenie v vodorodnuyu ehnergetiku / EH.EH. Shpil'rain, S.P. Malyshenko, G.G. Kuleshov. M.: Ehnergoatomizdat, 1984. 264s.

2. Ponomarev-Stepnoi, N.N. Atomnovodorodnaya ehnergetika. Sistemnye aspekty i klyuchevye problemy. Monografiya. / N.N. PonomarevStepnoi, A.YA. Stolyarevskii, V.P. Pakhomov. M.: Ehnergoatomizdat, 2008. 108 s.

3. Malyshenko, S.P. Issledovaniya i razrabot-ki OIVT RAN v oblasti tekhnologii vodorodnoi ehnergetiki / S.P. Malyshenko // Mezhdunarodnyi nauchnyi zhurnal «Al'ternativnaya ehnergetika i ehko-logiYA». 2011. № 3 (95). S. 10-34.

4. Yurin V.E., Egorov A.N. Prognoznaya ehkonomicheskaya ehffektivnost' kombinirovaniya AEHS s avtonomnym vodorodnym ehnergokompleksom // Mezhdunarodnyi nauchnyi zhurnal «Al'ternativnaya ehnergetika i ehkologiYA» (ISJAEE). 2019. №13-15. S.40-51

5. Patent RF № 2640409. Sposob povysheniya manevrennosti i bezopasnosti AEHS na osnove teplovogo i khimicheskogo akkumulirovaniya / Yurin V.E., Egorov A.N. // Zayavka na patent RF №2017106398 ot 27.02.2017, opubl. 9.01.2018. Byul. № 1.

6. Malyshenko S.P., Gryaznov A.N., Filatov N.I. High-pressure H2/O2 – steam generators and they possible applications. International Journal of Hydrogen Energy. 2004. Volume 29. pp. 589-596.

7. Development of Hydrogen-combustion Turbine. 1998. https://www.enaa.or.jp/WENET/report/1998/english/8_2.htm

8. Aminov R.Z. Kombinirovanie AEHS s mnogofunktsional'nymi ehnergeticheskimi ustanovkami / R.Z. Aminov, V.E. Yurin, A.N. Egorov. M.: Nauka, 2018. 240s.

9. Aminov R.Z., Egorov A.N. Evaluation of the efficiency of combining wet-steam NPPs with a closed hydrogen cycle // IOP Conf. Series: Journal of Physics: Conf. Series. 2018. Vol. 1111. 012022.

10. Patent RF №2488903. Sistema szhiganiya vodoroda v tsikle AEHS s regulirovaniem temperatu-ry vodorod-kislorodnogo para / R.Z. Aminov, A.N. Bairamov, V.E. Yurin // Zayavka ot 03.05.2012, opubl. 27.07.2013. Byul. №21.

11. Zel'dovich YA.B., Barenblatt G.I., Librovich B.V., Makhviladze G.M. Matematicheskaya teoriya gore-niya i vzryva. M.: Nauka, 1980. 478s.

12. Glinka N.L. Obshchaya khimiya. – Uchebnoe poso-bie dlya vuzov/ Pod red. V.A. Rabinovich. M.:Integral-Press, 2007. 728s.

13. Medvedeva O.N. Fiziko-khimicheskie osnovy goreniya gazovogo topliva. Saratov: SGTU, 2007. 116 s.

14. Yakimenko L. M., Modylevskaya I. D., Tkachek Z. A. Ehlektroliz vody. M.: Khimiya, 1970. 263 s.

15. Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie: Cprav. izd. / D.YU. Gamburg, V.P. Semenov, N.F. Dubovkin, L.N. Smir-nova. M.: Khimiya, 1989. 672 s.

16. Andryushchenko A.I. Osnovy tekhnicheskoi ter-modinamiki real'nykh protsessov. M.: Vysshaya shko-la, 1986. 268s.

17. Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei. M.: Nauka, 1972. 721s.

18. Aminov R.Z., Bairamov A.N. Kombinirova-nie vodorodnykh ehnergeticheskikh tsiklov s atomnymi ehlektrostantsiyami. – M.: Nauka, 2016 -254 s.

19. Stolyarevskii A.YA. Khemotermicheskie tsikly i ustanovki akkumulirovaniya ehnergii // Mezhdunarodnyi nauchnyi zhurnal Al'ternativnaya ehnergetika i ehkologiya. №3 (23). 2005. s.45-58.

20. Aminov R.Z., Egorov A.N., Yurin V.E., Bessonov V.N. Mnogofunktsional'noe rezervirova-nie sobstvennykh nuzhd atomnykh ehlektrostantsii // Atomnaya ehnergiya. 2016, t.121, vyp. 5. C. 256-261.

21. Yurin V.E., Egorov A.N. Obosnovanie ehkonomicheskoi konkurentosposobnosti avtonomnogo vodorodnogo ehnergokompleksa pri kombinirovanii s AEHS. Trudy Akademehnergo. №2, 2019. S. 53-62.

22. Aminov R.Z., Egorov A.N. Hydrogen-oxygen steam generator for a closed hydrogen combus-tion cycle // International Journal of Hydrogen Energy V. 44. I. 21. 2019. pp. 11161-11167

23. Srednyaya tsena realizatsii gaza v Rossii [Ehlektronnyi resurs]. Rezhim dostupa: http://www.gazprom.ru/about/marketing/europe. – (Data obrashcheniya: 05.04.2019).

24. Prognoz razvitiya ehnergetiki mira i Rossii do 2040 goda [Ehlektronnyi resurs]. – M.: INEHI RAN – ATS pri Pravitel'stve RF. – 2014. – Rezhim dostupa: https://www.eriras.ru/files/prognoz-2040.pdf. – (Data obrashcheniya: 05.04.2019).

25. Rasporyazhenie Pravitel'stva Rossiiskoi Federatsii №705-r ot 18 aprelya 2016 [Ehlektronnyi resurs]. Rezhim dostupa: http://government.ru/docs/22720. – (Data obrashcheniya: 05.04.2019).

26. Aminov R.Z., Egorov A.N., Yurin V.E. Redundancy of NPP’s own needs using hydrogen energy complex // 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE Publishing, 2019. DOI: 10.1109/FarEastCon.2019.8934690

27. Aminov R.Z., Egorov A.N. Comparison and analysis of residual heat removal systems of reactors in station blackout accidents // Atomic Energy. 2017. V. 121. № 6. pp. 402-408

28. Ofitsial'nyi sait o razmeshchenii zakazov na zakupki tovarov, rabot i uslug dlya nuzhd Goskorporatsii «RosatoM» http://zakupki.rosatom.ru (data obrashcheniya 25.12.2019).

29. Otkrytoe aktsionernoe obshchestvo «Administrator torgovoi sistemy optovogo rynka ehlektroehnergiI» https://www.atsenergo.ru (data obrashcheniya 25.12.2019).

30. Prognoz dolgosrochnogo sotsial'no-ehkonomicheskogo razvitiya Rossiiskoi Federatsii na period do 2030 goda http://economy.gov.ru/minec/activity/sections/macro/pro gnoz/doc20130325_06 (data obrashcheniya 25.09.2019).


Review

For citations:


Egorov A., Yurin V. Primary regulation of the current frequency in the power system by nuclear power plants based on hydrogen-thermal storage. Alternative Energy and Ecology (ISJAEE). 2021;(1-3):21-33. (In Russ.) https://doi.org/10.15518/isjaee.2021.01.002

Views: 642


ISSN 1608-8298 (Print)