Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск

ЭКСТРАОРДИНАРНОЕ ПРОЯВЛЕНИЕ ЭФФЕКТОВ ТИПА ЭФФЕКТА КУРДЮМОВА И ВОДОРОДНОГО СПИЛЛОВЕР ЭФФЕКТА В СВЯЗИ С ПРОБЛЕМОЙ ЭФФЕКТИВНОГО ХРАНЕНИЯ ВОДОРОДА В ГРАФИТОВЫХ НАНОВОЛОКНАХ

https://doi.org/10.15518/isjaee.2015.21.008

Полный текст:

Аннотация

Рассматриваются термодинамические стимулы и энергетика интеркаляции нанофазы молекулярного водорода высокой плотности в углеродные наноструктуры. Обсуждается физика экстраординарного проявления эффектов типа эффекта Курдюмова и водородного спилловер эффекта в связи с проблемой эффективного хранения водорода в графитовых нановолокнах.

Об авторе

Ю. С. Нечаев
ЦНИИчермет им. И.П. Бардина Институт металловедения и физики металлов им. Г.В. Курдюмова 105005 Москва, 2-я Бауманская ул., д. 9/23
Россия

д-р физ.-мат. наук, профессор, главный научный сотрудник



Список литературы

1. Juarez-Mosqueda R., Mavrandonakis A., Kuc A.B., Pettersson L.G.M., Heine T. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. // Front Chem. 2015. Vol. 3. P. 2. Published online 2015 Feb 2. | doi: 10.3389/fchem.2015.00002. PMCID: PMC4313777.

2. Han S.S., Jung H., Jung D.H., Choi S.-H., Park N. (2012). Stability of hydrogenation states of graphene and conditions for hydrogen spillover. // Phys. Rev. B. 2012. Vol. 85. P. 155408. 10.1103/PhysRevB.85.155408.

3. Tsao C.S., Liu Y., Chuang H.Y., Tseng H.H., Chen T.Y., Chen C.H., Yu M.S., Li Q., Lueking A.D., Chen S.H. Hydrogen Spillover effect of Pt-doped Activated Carbon Studied by Inelastic Neutron Scattering // J. Phys. Chem. Lett. 2011. Vol. 2. P. 2322– 2325.

4. Li Q., Lueking A.D. Effect of Surface Oxyen Groups and Water on Hydrogen Spillover in Pt-Doped Activated Carbon // J. Phys. Chem. C. 2011. Vol. 115. P. 4273-4282.

5. Bhowmick R., Rajasekaran S., Friebel D., Beasley C., Jiao L., Ogasawara H., Dai H., et al. Hydrogen spillover in pt-single-walled carbon nanotube composites: formation of stable C-H bonds. // J. Am. Chem. Soc. 2011. Vol. 133. P. 5580–5586. doi: 10.1021/ja200403m.

6. Chen C.-H., Huang C.-C. Enhancement of hydrogen spillover onto carbon nanotubes with defect feature // Microporous Mesoporous Mater. 2008. Vol. 109. P. 549–559. 10.1016/j.micromeso.2007.06.003.

7. Chen H., Yang R.T. Catalytic effects of TiF3 on hydrogen spillover on Pt/Carbon for hydrogen storage // Langmuir. 2010. Vol. 26. P. 15394–15398. 10.1021/la100172b.

8. Chen L., Cooper A.C., Pez G.P., Cheng H. Mechanistic study on hydrogen spillover onto graphitic carbon materials // J. Phys. Chem. C. 2007. Vol. 111. P. 18995–19000. 10.1021/jp074920g.

9. Chen L., Cooper A.C., Pez G.P., Cheng H. Density functional study of sequential H2 dissociative chemisorption on a Pt6 cluster // J. Phys. Chem. C. 2007. Vol. 111. P. 5514–5519. 10.1021/jp070181s.

10. Chen L., Zhou C.-G., Wu J.-P., Cheng H.-S. Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review // Front. Phys. China. 2009. Vol. 4. P. 356–366. 10.1007/s11467-009-0050-6.

11. Cheng H., Chen L., Cooper A.C., Sha X., Pez G.P. Hydrogen spillover in the context of hydrogen storage using solid-state materials // Energy Environ. Sci. 2008. Vol. 1. P. 338–354. 10.1039/B807618A.

12. Lachawiec A.J., Qi G., Yang R.T. Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement // Langmuir. 2005. Vol. 21. P. 11418–11424. 10.1021/la051659r.

13. Li Y., Yang R.T. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover // J. Am. Chem. Soc. 2006. Vol. 128. P. 8136–8137. 10.1021/ja061681m.

14. Li Y., Yang R.T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover // J. Am. Chem. Soc. 2006. Vol. 128. P. 726– 727. 10.1021/ja056831s.

15. Liu Y.-Y., Zeng J.-L., Zhang J., Xu F., Sun L.-X. Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 4005–4010. 10.1016/j.ijhydene.2007.04.029.

16. Lueking A.D., Yang R.T. Hydrogen spillover to enhance hydrogen storage study of the effect of carbon physicochemical properties // Appl. Catal. A. 2004. Vol. 265. P. 259–268. 10.1016/j.apcata.2004.01.019.

17. Mitchell P.C.H., Ramirez-Cuesta A.J., Parker S.F., Tomkinson J. Inelastic neutron scattering in spectroscopic studies of hydrogen on carbon-supported catalysts-experimental spectra and computed spectra of model systems // J. Mol. Struct. 2003. Vols. 651–653. P. 781–785. 10.1016/S0022-2860(03)00124-8.

18. Mitchell P.C.H., Ramirez-Cuesta A.J., Parker S.F., Tomkinson J., Thompsett D. Hydrogen spillover on carbon-supported metal catalysts studied by inelastic neutron scattering. Surface vibrational states and hydrogen riding modes // J. Phys. Chem. B. 2003. Vol. 107(28). P. 6838–6845. 10.1021/jp0277356.

19. Psofogiannakis G.M., Froudakis G.E. DFT study of the hydrogen spillover mechanism on Pt-Doped graphite // J. Phys. Chem. C. 2009. Vol. 113. P. 14908– 14915. 10.1021/jp902987s.

20. Wu H.-Y., Fan X., Kuo J.-L., Deng W.-Q. DFT study of hydrogen storage by spillover on graphene with boron substitution // J. Phys. Chem. C. 2011. Vol. 115. P. 9241–9249. 10.1021/jp200038b.

21. Yang F.H., Lachawiec A.J., Yang R.T. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes // J. Phys. Chem. B. 2006. Vol. 110. P. 6236–6244. 10.1021/jp056461u.

22. Yang R.T., Wang Y. Catalyzed hydrogen spillover for hydrogen storage // J. Am. Chem. Soc. 2009. Vol. 131. P. 4224–4226. 10.1021/ja808864r.

23. Zacharia R., Rather S., Hwang S.W., Nahm K.S. Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes // Chem. Phys. Lett. 2007. Vol. 434. P. 286–291. 10.1016/j.cplett.2006.12.022.

24. Zhou C., Wu J., Nie A., Forrey R.C., Tachibana A., Cheng H. On the sequential hydrogen dissociative chemisorption on small platinum clusters: a density functional theory study // J. Phys. Chem. C. 2007. Vol. 111. P. 12773–12778. 10.1021/jp073597e.

25. Zieliñski M., Wojcieszak R., Monteverdi S., Mercy M., Bettahar M.M. Hydrogen storage in nickel catalysts supported on activated carbon // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 1024–1032. 10.1016/j.ijhydene.2006.07.004.

26. Nechaev Yu.S. On the H2 nanophase intercalation into graphene-layers structures: Relevence to the spillover effect // Int. Scientific Journal for Alternative Energy and Ecology. 2015. # 06 (170). P. 37-40.

27. Nechaev Yu.S., Veziroglu T.N. On the hydrogenation-dehydrogenation of graphene-layer-nanostructures: Relevance to the hydrogen on-board storage problem // Int. Journal of Physical Sciences. 2015. Vol. 10, Iss. 2. P. 54-89 (an “open access” Journal).

28. Lobodjuk V.A., Estrin E.I. Martensite Transformation. Moscow: Fizmatlit, 2009, in Russian.

29. Koval Yu.N. Peculiarities of relaxation processes during martensite transformation // Usp. Fiz. Met. 2005. Vol. 6. P. 169-196.

30. Hu S., Lozada-Hidalgo M., Wang F.C., Mishchenko A., Schedin F., Nair R.R., Hill E.W., Boukhvalov D.W., Katsnelson M.I., Dryfe R.A.W., Grigorieva I.V., Wu H.A., Geim A.K. Proton transport through one atom thick crystals // Materials Science (cond-mat.mtrl-sci); Mesoscale and Nanoscale Physics (cond-mat.mes-hall), (Submitted on 31 Oct 2014), 10.1038/nature14015, arXiv:1410.8724 cond-mat.mtrl-sci. (or arXiv:1410.8724v1 cond-mat.mtrl-sci.).

31. Naumov I.I., Hemley R.J. Aromaticity, Closed-Shell Effects, and Metallization of Hydrogen // Acc. Chem. Res. 2014. Vol. 47. P. 3551−3559.

32. Ting V.P., Ramirez-Cuesta A.J., Bimbo N., Sharpe J.E., Noguera-Diaz A., Presser V., Rudic S., Mays T.J. Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures // ACS Nano, Just Accepted Manuscript (2015). DOI: 10.1021/acsnano.5b02623, www.acsnano.org.

33. Nechaev Yu.S., Yurum A., Tekin A., Yavuz N.K., Yurum Yu., Veziroglu T.N. Fundamental open questions on engineering of super hydrogen sorption in graphite nanofibers: Relevance for clean energy applications // American Journal of Analytical Chemistry. 2014. Vol. 5, # 16. P. 1151-1165 (an “open access” Journal).


Для цитирования:


Нечаев Ю.С. ЭКСТРАОРДИНАРНОЕ ПРОЯВЛЕНИЕ ЭФФЕКТОВ ТИПА ЭФФЕКТА КУРДЮМОВА И ВОДОРОДНОГО СПИЛЛОВЕР ЭФФЕКТА В СВЯЗИ С ПРОБЛЕМОЙ ЭФФЕКТИВНОГО ХРАНЕНИЯ ВОДОРОДА В ГРАФИТОВЫХ НАНОВОЛОКНАХ. Альтернативная энергетика и экология (ISJAEE). 2015;(21):70-75. https://doi.org/10.15518/isjaee.2015.21.008

For citation:


Nechaev Y.S. EXTRAORDINARY MANIFESTATION OF THE KURDJUMOV-LIKE EFFECT AND THE SPILLOVER-LIKE ONE, RELEVANCE TO THE PROBLEM OF THE EFFICIENT HYDROGEN STORAGE IN GRAPHITE NANOFIBERS. Alternative Energy and Ecology (ISJAEE). 2015;(21):70-75. (In Russ.) https://doi.org/10.15518/isjaee.2015.21.008

Просмотров: 198


ISSN 1608-8298 (Print)