

Yttrium in fullerenes
https://doi.org/10.15518/isjaee.2021.01.004
Abstract
The study of the literature data showed that yttrium is encapsulated in fullerene molecules in the form of metal atoms, clusters of nitrides, carbides, sulfides and other compounds. Endohedral metallofullerenes are capable of encapsulating up to four metal atoms. In the molecules of these compounds, the metal atoms are positively charged due to the transfer of an electron from the endohedral metal atom to the fullerene carbon cage. First of all, the main experimental and theoretical achievements described in early (up to 2000) works are considered. Achievements in the production, separation (isolation) and various spectroscopic characteristics of endohedral metallofullerenes have been thoroughly studied in an attempt to elucidate their structural, electronic, and solid-state properties. It is shown that endohedral metallofullerenes in electrical conductivity can be metals, semiconductors with small gaps, or insulators, depending on the size of the fullerene, the type and number of encapsulated metal atoms. Other electronic and magnetic properties of metallofullerenes are also interesting. Also, some promising applications of metallofullerenes are considered.
In addition, when analyzing the literature on the synthesis and properties of metalloendofullerenes, a very large number of publications related to the exohedral functionalization of metallofullerenes attracts attention.
First of all, it should be noted that the main problem hindering the development of science, technology and the use of fullerenes, endohedral metallofullerenes and nanotubes was the difficulty of obtaining high-purity samples. When metals are introduced into the electric arc process, the situation becomes more complicated due to the presence of many isomers of both fullerenes and endohedral metallofullerenes. Exohedral functionalization helps to solve the problem of separation of synthesis products, on the one hand, and leads to the production of substances with new useful properties and potential applications in materials science and medicine.
It is noted that currently the most productive and widespread method for the production of endohedral fullerenes is the electric arc process. The quantitative and qualitative output of metallofullerenes is significantly influenced by the conditions of the process in the reactor.
About the Authors
N. A. GavrylyukUkraine
N.A. Gavrylyuk, Ph.D. (chemistry), Researcher of laboratory No 67 “Investigation of processes and systems of hydrogen and solar-hydrogen energy transformation”; Researcher Department of Composite Materials
N. Y. Akhanova
Kazakhstan
N.Y.Akhanova, Scientific secretary of National nanotechnological laboratory of open type
D. V. Schur
Ukraine
D.V. Schur, Professor, chief of laboratory № 67 “Investigation of processes and systems of hydrogen and solar-hydrogen energy transformation”
A. P. Pomytkin
Ukraine
A. P. Pomytkin, associate professor, researcher of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation”; associate professor at the National Technical University of Ukraine (KPI) (1975 till this time).
A. Veziroglu
United States
A. Veziroglu, Executive Vice President and Chief Financial Officer, member of several scientific organizations
T. N. Veziroglu
United States
T.N. Veziroglu, President, recipient of several international awards, member of 18 scientific organizations
M. T. Gabdullin
Kazakhstan
M.T. Gabdullin, PhD, director of National Nanotechnological laboratory of open type
T. S. Ramazanov
Kazakhstan
T.S. Ramazanov, Academician of National Academy of Sciences of Kazakhstan, Vice-Rector for Research, Head of Plasma Physics Department
Al. D. Zolotarenko
Ukraine
Al.D. Zolotarenko, Senior Researcher
An. D. Zolotarenko
Ukraine
An.D. Zolotarenko, Senior Researcher
References
1. Lu X., Echegoyen L., Balch A.L., Nagase S., Akasaka T. Endohedral Metallofullerenes. Basics and Applications. CRC PressTaylor & Francis Group. 2015. R. 276.
2. Heath J.R., O'Brien S.C., Zhang Q., Liu Y., Curl R. F., Tittel F. K. and Smalley R.E. // J. Am. Chem. Soc. 1985. Vol. 107. P. 7779–7780.
3. Chai Y., Cuo T., Jin C., Haufler R.E., Chibante L.P.F., Fure J., Wang L., Alford J.M., Smalley R.E. Fuller-enes wlth Metals Inside // J. Phys. Chem. 1991. Vol. 95. No 20. P. 7564–7568.
4. Popov A.A. Synthesis and Molecular Structures of Endohedral Fullerenes. Chapter. 2017. P. 1–34.
5. Popov A.A., Avdoshenko S.M., Pendás A.M. and Dunsch L. Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes // Chem. Commun. 2012. Vol. 48. P. 8031–8050.
6. Xianglei K., Bao X. Formation of endohedral metallofullerene (EMF) ions of (M = La, Y, n ≤ 6, 50 ≤ 2m ≤ 194) in the laser ablation process with gra-phene as precursor // Rapid Communications in Mass Spectrometry. 2017. Vol. 31, No 10. P. 865–872.
7. Soderholm L., Wurz P., Lykke K.R., Parker D.H., Lytle F.W. An EXAFS study of the metallofullerene YC82 — is the yttrium inside the cage. J. Phys. Chem. 1992. Vol. 96. P. 7153–7156.
8. Hoinkis M., Yannoni C.S., Bethune D.S., Salem J.R., Johnson R.D., Crowder M.S., deVries M.S. Multiple species of La@C82 and Y@C82 — mass spectroscopic and solution EPR studies // Chem. Phys. Lett. 1992. Vol. 198. P. 461–465.
9. Shinohara H., Inakuma M., Kishida M., Yamazaki S., Hashizume T., Sakurai T. An oriented cluster formation of endohedral Y@C82 metallofullerenes on clean surfaces // J. Phys. Chem. 1995. Vol. 99, No 38. P. 13769–13771.
10. Akasaka T., Nagase S., Kobayashi K. Recent development on fullerene chemistry Part 2 – chemical derivatization of metallofullerenes // Journal of Synthetic Organic Chemistry Japan. 1996. Vol. 54, No 7. P. 580– 585.
11. Nagase S., Kobayashi K., Akasaka T. Recent advances in the structural determination of endohedral metallofullerenes // Journal of Computational Chemistry. 1998. Vol. 19, No 2. P. 232–239.
12. Kimura T., Suga T., Shinohara H. Production and mass spectroscopic characterization of metallocarbon clusters incorporating Sc, Y, and Ca atoms // International Journal of Mass Spectrometry. 1999. Vol. 188. P. 3225–232.
13. Lian Y., Shi Z., Zhou X., He X., Gu Z. Highyield preparation of endohedral metallofullerenes by animproved DC arc-discharge method // Carbon. 2000. Vol. 38. P. 2117–2121.
14. Shinohara H. Endohedral metallofullerenes // ReportsonProgressinPhysics. 2000. Vol. 63, No 6. P. 843–892.
15. Kareev I.E. Sintez, reaktsionnaya sposob-nost' i fiziko-khimicheskie svoistva ehndometallo-fullerenov M@S2p (M = U, La, Se). Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata khimicheskikh nauk. Moskva, 2006.
16. Kareev I.E., Bubnov V.P., Yagubskii EH.B. Sintez ehndoehdral'nykh dii mono-metallofullerenov Y2@C84, Ce2@C78, M@C82 (M = Y, Ce). Izv. AN, Ser. khim., 2007, T. 11, S. 2067–2071.
17. Kareev I.E., Bubnov V.P., Fedutin D.N. Ehlektrodugovoi vysokoproizvoditel'nyi reaktor dlya sinteza sazhi s vysokim soderzhaniem ehndoehd-ral'nykh metallofullerenov. ZHTF, 2009, T. 79, № 11, S. 134– 137.
18. Slanina Z., Uhlík F., Lee S.-L., Adamowicz L., Akasaka T., Nagase S. Computed stabilities in metallofullerene series: Al@C82, Sc@C82, Y@C82, and La@C82 // International Journal of Quantum Chemistry. 2011. Vol. 111. P. 2712–2718.
19. Slanina Z., Uhlík F., Lee S.-L., Nagase S. Metallofullerene Series: Free-Metal Ionization-Potential Control of the Production Yields // The Open Chemical Physics Journal. 2011. Vol. 3, No 1. P. 1–5.
20. Kareev I.E., Laukhina E., Bubnov V.P., Martynenko V.M., Lloveras V., Vidal-Gancedo J., MasTorrent M., Veciana J., Rovira C. Harnessing electron transfer from the perchlorotriphenylmethide anion to Y@C82(C(2v)) to engineer an endometallofullerenebased salt. // Chemphyschem. 2013. Vol. 14, No 8. P. 1670–1675.
21. Bao L., Pan C.,Slanina Z., Uhlík F., Akasaka T., Lu X. Isolation and crystallographic characterization of the labile isomer of Y@C82 cocrystallized with Ni(OEP): Unprecedented dimerization of pristine metallofullerenes // Angewandte Chemie. 2016. Vol. 128, No 32. P. 9380–9384.
22. Jiang Y., Wang D., Xu D., Zhang J. and Wang Z. Dimerization of metallofullerenes to obtain materials with enhanced nonlinear optical properties // Chem. Phys. Chem. 2018. Vol. 9, No 22. P. 2995–3000.
23. Miralrio A., Sansores L.E. Structures, stabilities, and electronic properties of fullerene C 36 with endohedral atomic Sc, Y, and La: A dispersion-corrected DFT study // International Journal of Quantum Chemistry. 2017. Vol. 117, No 6. P. 25335.
24. Xu D., Wang Z., Shinohara H. Capturing the Unconventional Metallofullerene M@C66 by Trifluoromethylation: A Theoretical Study // Chem. Phys. Chem. 2017. Vol. 18, No 21. P. 3007–3011.
25. Kobayashi K. & Nagase S. Structures and electronic states of endohedral dimetallofullerenes: M2@C80 (M = Sc, Y, La, Ce, Pr, Eu, Gd, Yb, and Lu) // Chem. Phys. Lett. 1996. Vol. 262. P. 227–232.
26. Zuo T., Xu L., Beavers C.M., Olmstead M.M., Fu W., Crawford T.D., Balch A.L. and Dorn H.C. M2@C79N (M = Y, Tb): Isolation and Characterization of Stable Endohedral Metallofullerenes Exhibiting M-M Bonding Interactions Inside Aza[80]Fullerene Cage // J. Am. Chem. Soc. 2008. Vol. 130, No 39. P. 12992– 12997.
27. Ma Y., Wang T., Wu J., Feng Y., Li H., Li J., Shu C. and Wang C. Electron Spin Manipulation via Encaged Cluster: Differing Anion Radicals of Y2@C82Cs, Y2C2@C82-Cs, and Sc2C2@C82-Cs // J. Phys. Chem. Lett. 2013. Vol. 4, No 3. P. 464–467.
28. Wang Z., Kitaura R. and Shinohara H. Metaldependent stability of pristine and functionalized unconventional dimetallofullerene M2@Ih-C80. // J. Phys. Chem. C. 2014. Vol. 118, No 25. P. 13953–13958.
29. Velloth A., Imamura Y., Kodama T. and Hada M. Theoretical Insights into the Electronic Structures and Stability of Dimetallofullerenes M2@Ih-C80 // J. Phys. Chem. C. 2017. Vol. 121, No 33. P. 18169–18177. DOI: 10.1021/acs.jpcc.7b03533
30. Pan C., Bao L., Yu X., Fang H., Xie Y., Akasaka T. and Lu X. Facile access to Y2C2n (2n = 92–130) and crystallographic characterization of Y2C2@C1(1660)-C108: A giant nanocapsule with a linear carbide cluster // ACS Nano. 2018. Vol. 12, No 2. P. 2065–2069.
31. Xu W., Feng L., Calvaresi M., Liu J., Liu Y., Niu B., Shi Z.J., Lian Y.F., Zerbetto F. An experimentally observed Trimetallofullerene Sm3@Ih-C80: Encapsula-tion of three metal atoms in a cage without a nonmetallic mediator // J. Am. Chem. Soc. 2013. Vol. 135. P. 4187–4190.
32. Popov A., Zhang L., Dunsch L. A Pseudoatom in a cage: Trimetallofullerene Y3@C80 mimics Y3N@C80 with Nitrogen substituted by a Pseudoatom // Acs Nano. 2010. Vol. 4. P. 795–802.
33. Garcia-Borràs M., Osuna S., Luis J.M., Swart M., Solà M. A Complete guide on the influence of metal clusters in the diels–alder regioselectivity of Ih-C80 endohedral metallofullerenes // Chemistry. A European Journal. 2013. Vol. 19, No 44. P. 14931–14940.
34. Garcia-Borràs M., Osuna S., Luis J.M., Swart M., Solà M. Chapter: Understanding the Exohedral Functionalization of Endohedral Metallofullerenes. In: Exotic Properties of Carbon Nanomatter, Part of the Carbon Materials: Chemistry and Physics book series (CMCP, Volume 8), 2015, P. 67–99.
35. Akasaka T., Lu X. Structural and electronic properties of endohedral metallofullerenes // Chem. Rec. 2012. Vol. 12. P. 256–269.
36. Yang S.F., Troyanov S., Popov A., Krause M., Dunsch L.. Deviation from the Planaritya Large Dy3N Cluster Encapsulated in an Ih-C80 Cage: An X-ray Crystallographic and Vibrational Spectroscopic Study // J. Am.Chem. Soc. 2006. Vol. 128. P. 16733–16739.
37. Popov A. and Dunsch L. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68 − 98): a density functional theory study // Journal of the American Chemical Society. 2007. Vol. 129, No 38. P. 11835–11849.
38. Stevenson S., Rice G., Glass, T., Harich K., Cromer F., Jordan M.R., Craft J. et al. Small-bandgap endohedral metallofullerenes in high yield and purity // Nature. 1999. Vol. 401. P. 55–57.
39. Chaur M.N., Valencia R., Rodriguez-Fortea A., Poblet J.M., Echegoyen L. Trimetallic nitride endohedral fullerenes: Experimental and theoretical evidence for the M3N6+@C-2n(6-) model // Angew. Chem. Int. Ed. 2009. Vol. 48. P. 1425–1428.
40. Dorn H.C., Iezzi E.B., Stevenson S., Balch A.L., Dunchamp J.C. Trimetallic Nitride Template (TNT) En-dohedral Metallofullerenes. In: T. Akasaka and S. Nagase (eds.). Endofullerenes, Chapter 5. 2002. P. 121–131.
41. Zhang J., Stevenson S., Dorn H.C. Trimetallic Nitride Template Endohedral Metallofullerenes: Discovery, Structural Characterization, Reactivity, and Applications // Accounts of Chemical Research. 2013. P. 1548– 1557.
42. Cerón M.R., MaffeisV., Stevenson S., Echegoyen L. Endohedral fullerenes: Synthesis, isola-tion, monoand bis-functionalization // Inorganica Chimica Acta. 2017. Vol. 468. P. 16–27.
43. Dunsch L., Krause M., Noack J. et al. Endohedral nitride cluster fullerenes – Formation and spectroscopic analysis of L3-xMxN@C2n (0 <= x <= 3; n=39,40) // J. Phys. Chem. Solids. 2004. Vol. 65, No 2– 3. P. 309–315.
44. Gan L.-H., Yuan R. Influence of cluster size on the structures and stability of trimetallic nitride fullerenes M3N@C80 // Chem. Phys. Chem. 2006. Vol. 7, No 6. P. 1306–1310.
45. Valencia R., Rodríguez-Fortea A., Clotet A., de Graaf C., Chaur M.N., Echegoyen L., Poblet J.M. Electronic structure and redox properties of metal nitride endohedral fullerenes M3N@C2n (M=Sc, Y, La, and Gd; 2n=80, 84, 88, 92, 96) // Chemistry – A European Jour-nal. 2009. Vol. 15, No 41. P. 10997–11009.
46. Fu W., Xu L., Azurmendi H., Ge J., Fuhrer T., Zuo T., Reid J., Shu C., Harich K. and Dorn H.C. 89Y and 13C NMR Cluster and Carbon Cage Studies of an Yttrium Metallofullerene Family, Y3N@C2n (n = 40−43) // J. Am. Chem. Soc. 2009. Vol. 131, No 33, P. 11762–11769.
47. Yang S., Zhang L., Zhang W., Dunsch L. A facile route to metal nitride clusterfullerenes by using guanidinium salts: a selective organic solid as the nitrogen source // Chemistry: a European Journal. 2010. Vol. 16, No 41. P. 12398 –12405.
48. Ma Y., Wang T., Wu J., Feng Y., Xu W., Jiang L., Zheng J., Shu C., Wang C. Size effect of endohedral cluster on fullerene cage: Preparation and structural studies of Y3N@C78–C2 // Nanoscale, 2011. Vol. 3. P. 4955–4957.
49. Popov A.A., Avdoshenko S., Cuniberti G., Dunsch L. Dimerization of radical-anions: Nitride clusterfullerenes versus empty fullerenes // Journal of Physical Chemistry Letters. 2011. Vol. 2. P.1592–1600.
50. Zhang J., Bearden D.W., Fuhrer T., Xu L., Fu W., Zuo T. and Dorn H.C. Enhanced Dipole Moments in Trimetallic Nitride Template Endohedral Metallofullerenes with the Pentalene Motif // Journal of the American Chemical Society. 2013, Vol. 135, No 9. P. 3351–3354.
51. Liu X., Dorn H.C. DFT prediction of chromatographic retention behavior for a trimetallic nitride metallofullerene series // Inorganica Chimica Acta. 2017. Vol. 468. P. 316–320.
52. Yang S.F., Popov A.A., Dunsch L. Carbon pyramidalization in fullerene cages induced by the endohedral cluster: Non-scandium mixed metal nitride clusterfullerenes // Angew. Chem. Int. Ed. 2008. Vol. 47. P. 8196–8200.
53. Stevenson S., Fowler P.W., Heine T., Duchamp J.C., Rice G., Glass T., Harich K., Hajdu E., Bible R., Dorn H.C. A stable non-classical metallofullerene family // Nature. 2000. Vol. 408. P. 427 – 428.
54. Chen N., Fan L.Z., Tan K., Wu Y.Q, Shu C.Y., Lu X., Wang C.R. Comparative spectroscopic and reactivity studies of Sc3xYxN@C80 (x = 0–3) // J. Phys. Chem. C. 2007. Vol. 111. P. 11823–11828.
55. Celaya C.A., Reina M., Muñiz J. and Sansores L.E. Are small quasi-fullerenes capable of encapsulating trimetallic nitrides A3-xBxN (A, B =Sc, Y, La, x=0-3)? A DFT Study // ChemistrySelect. 2018. Vol. 3, No 24. P. 6791–6801.
56. Chen N., Zhang E.-Y., Wang C.-R. C80 encaging four different atoms: The synthesis, isolation, and characterizations of ScYErN@C80 // J. Phys. Chem. B. 2006. Vol. 110, No 27. P. 13322–13325.
57. Tarábek J., Yang S., Dunsch L. Redox properties of mixed Lutetium/Yttrium Nitride clusterfullerenes: Endohedral Lu x Y3− x N@C80 (I) ( x =0–3) compounds // Chem. Phys. Chem. 2009. Vol. 10, No 7. P. 1037–1043.
58. Zhang Y., Popov A.A., Dunsch L. Endohedral metal or a fullerene cage based oxidation? Redox duality of nitride clusterfullerenes Ce x M 3−x N@C 78–88 (x = 1, 2; M = Sc and Y) dictated by the encaged metals and the carbon cage size // Nanoscale. 2014. Vol. 6. P. 1038– 1048.
59. Zhang Y., Schiemenz S., Popov A.A., Dunsch L. Strain-driven endohedral redox couple CeIV/CeIII in nitride clusterfullerenes CeM2N@C80 (M = Sc, Y, Lu) // Journal of Physical Chemistry Letters. 2013. Vol. 4, No 15. P. 2404–2409.
60. Popov A.A., Schiemenz S., Avdoshenko S., Yang S. The State of Asymmetric Nitride Clusters in Endohedral Fullerenes as Studied by (14)N NMR Spectroscopy: Experiment and Theory // The Journal of Physical Chemistry C. 2011. Vol. 115. P. 15257–15265.
61. Suzuki A., Oku T. Electronic structure and magnetic properties of endohedral metallofullerenes based on mixed metal cluster within fullerene cage with trifluoromethyl groups // Journal of Physics: Conference Series. 2013. Vol. 433. P. 012004.
62. Suzuki A., Oku T. Influence of chemical substitution in ScxY3−xN@C80(CF3)n endohedral fullerenes on magnetic properties // Physica B: Condensed Matter. 2013. Vol. 428. P. 18–26.
63. Chen C., Liu F., Li S., Wang N., Popov A.A., Jiao M., Wei T., Li Q., Dunsch L. and Yang S. Titanium/Yttrium mixed metal nitride clusterfullerene TiY2N@C80: Synthesis, isolation, and effect of the group-iii metal // Inorg. Chem. 2012. Vol. 51, No 5. P. 3039–3045.
64. Lu X., Akasaka T. and Nagase S. Carbide cluster metallofullerenes: Structure, properties, and possible origin // Acc. Chem. Res. 2013. Vol. 46, No 7. P. 1627– 1635.
65. Shinohara H., Tagmatarchis N. Chapter 5: Carbide and nitride metallofullerenes. In book: Endohedral metallofullerenes: Fullerenes with metal inside. 2015. (https://doi.org/10.1002/9781118698006.ch5).
66. Zhang J., Bowles F.L., Bearden D.W., Ray W.K., Fuhrer T., Ye Y., Dixon C., Harich K., Helm R.F., Olmstead M.M., Balch A.L., Dorn H.C. A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism // Nature Chemistry. 2013. Vol. 5. P. 880–885.
67. Inoue T., Tomiyama T., Sugai T., Shinohara H. Spectroscopic and structural study of Y2C2 carbide encapsulating endohedral metallofullerene: (Y2C2)@C82 // Chem. Phys. Lett. 2003. Vol. 382, No 3–4. P. 226–231.
68. Inoue T., Tomiyama T., Sugai T., Okazaki T., Suematsu T., Fujii N., Utsumi H., Nojima K., Shinohara H. Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (Isomers I, II, and III). J Phys Chem B. 2004. Vol. 108, No 23. P. 7573–7579.
69. Nishibori E., Ishihara M., Takata M., Sakata M., Ito Y., Inoue T., Shinohara H. Bent (metal)2C2 clusters encapsulated in (Sc2C2)@C82(III) and (Y2C2)@C82(III) metallofullerenes // Chem. Phys. Lett. 2006. Vol. 433, No 1–3. P. 120–124.
70. Valencia R., Rodríguez-Fortea A. and Poblet J.M. Understanding the stabilization of metal carbide endohedral fullerenes M2C2@C82 and related systems // J. Phys. Chem. A. 2008. Vol. 112, No 20. P. 4550– 4555.
71. Zhang J., Fuhrer T., Fu W., Ge J., Bearden D.W., Dallas J., Duchamp J., Walker K., Champion H., Azurmendi H., Harich K. and Dorn H.C. Nanoscale fullerene compression of an yttrium carbide cluster // J. Am. Chem. Soc. 2012. Vol. 134. P. 8487–8493.
72. Yang T., Zhao X., Li S.-T. and Nagase S. Is the isolated pentagon rule always satisfied for metallic carbide endohedral fullerenes? // Inorg. Chem. 2012. Vol. 51. No 21. P. 11223–11225.
73. Maki S., Nishibori E., Terauchi I., Ishihara M., Aoyagi S., Sakata M., Takata M., Umemoto H., Inoue T. and Shinohara H. A structural diagnostics diagram for metallofullerenes encapsulating metal carbides and nitrides // Journal of the American Chemical Society. 2013. Vol. 135, No 2. P. 918–923.
74. Junghans K., Schlesier C., Kostanyan A., Samoylova N.A., Deng Q., Rosenkranz M., Schiemenz S., Westerström R., Greber T., Büchner B. and Popov A.A. Methane as a selectivity booster in the Arc-discharge synthesis of endohedral fullerenes: Selective synthesis of the single-molecule Magnet Dy2TiC@C80 and its congener Dy2TiC2@C80 // Angewandte Chemie International Edition. 2015. Vol. 54, No 45. P. 13411–13415.
75. Slanina Z., Uhlík F., Pan C., Akasaka T., Lu X. and Adamowicz L. Computed stabilization for a giant fullerene endohedral: Y2C2@C1(1660)–C108 // Chemical Physics Letters. 2018. Vol. 710. P. 147–149.
76. Brandenburg A., Krylov D.S., Beger A., Wolter A.U.B., Büchner B. and Popov A.A. Carbide cl usterfullerene DyYTiC@C80featuring three different metals in the endohedral cluster and its single-ion magnetism // Chem. Commun. 2018. Vol. 54. P. 10683–10686.
77. Garcia-Borràs M., Osuna S., Luis J.M., Swart M., Solà M. The exohedral diels–alder reactivity of the Titanium Carbide endohedral metallofullerene Ti2C2@D3h-C78: Comparison with D3h-C78 and M3N@D3h-C78 (M=Sc and Y) reactivity chemistry // A European Journal. 2012. Vol. 18, No 23. P. 7141–7154.
78. Ge Z., Duchamp J.C., Cai T., Gibson H.W. and Dorn H.C. Purification of endohedral trimetallic nitride fullerenes in a single, facile step // Journal of the American Chemical Society. 2005. Vol. 127, No 46. P. 16292– 16298.
79. Cardona C.M., Kitaygorodskiy A. and Echegoyen L. Trimetallic nitride endohedral metallofullerenes: Reactivity Dictated by the encapsulated metal cluster // Journal of the American Chemical Society. 2005. Vol. 127, No 29. P. 10448–10453.
80. Cardona C.M., Elliott B. and Echegoyen L. Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er) // J. Am. Chem. Soc. 2006. Vol. 128, No 19. P. 6480–6485.
81. Echegoyen L., Chancellor C.J., Cardona C.M., Elliott B., Rivera J., Olmstead M.M., Balch A.L. X-Ray crystallographic and EPR spectroscopic characterization of a pyrrolidine adduct of Y3N@C80 // Chemical Communications. 2006. No 25. P. 2653–2655.
82. Lukoyanova O., Cardona C.M., Rivera J., LugoMorales L.Z., Chancellor C.J., Olmstead M.M., Rodríguez-Fortea A., Poblet J.M., Balch A.L. and Echegoyen L. “Open rather than closed” Malonate methanofullerene derivatives. The formation of methanofulleroid adducts of Y3N@C80 // J. Am. Chem. Soc. 2007. Vol. 129, No 34. P. 10423–10430.
83. Osuna S., Swart M. and Solà M. The diels−alder reaction on endohedral Y3N@C78: The importance of the fullerene strain energy // Journal of the American Chemical Society. 2009. Vol. 131, No 1. P. 129–139.
84. Shu C., Xu W., Slebodnick C., Champion H., Fu W., Reid J.E., Azurmendi H., Wang C., Harich K., Dorn H.C. and Gibson H.W. Syntheses and structures of Phenyl-C81-Butyric acid methyl esters (PCBMs) from M3N@C80 // Organic Letters. 2009. Vol. 11. No 8. P. 1753–1756.
85. Pinzón J.R., Cardona C.M., Herranz M.A., Plonska-Brzezinska M., Palkar A., Athans A.J., Martín N., Rodríguez-Fortea A., Poblet J.M., Bottari G., Torres T., Gayathri S.S., Guldi D.M., Echegoyen L. Metal nitride cluster fullerene M3N@C80 (M=Y, Sc) based dyads: Synthesis, and electrochemical, theoretical and photo-physical studies // Chemistry – A European Journal. 2009. Vol. 15. No 4. P. 864–877.
86. Aroua S. and Yamakoshi Y. Prato reaction of M3N@Ih-C80 (M = Sc, Lu, Y, Gd) with reversible isom-erization. J. Am. Chem. Soc. 2012. Vol. 134, No 50. P. 20242–20245.
87. Sin K.-R., Ko S.-G., Ri K.-Y. and Im S.-J. Study on the electronic structure and stability of some endohedral fullerenes – RE3N@C80 (RE = Sc, Y, La) by PM7 // Chemical Physics. 2014. P. 1-8.
88. Yang T., Nagase S., Akasaka T., Poblet J.M., Houk K.N., Ehara M. and Zhao X. (2 + 2) Cycloaddition of benzyne to endohedral metallofullerenes M3N@C80 (M = Sc, Y): A Rotating-intermediate mechanism // Journal of the American Chemical Society. 2015. Vol. 137, No 21. P.6820–6828.
89. Li S., Tang C., Zhang X. How will the benzyne group –C6H4 affect the structure, electronic and optical properties of M3N@C80 (M = Sc, Y)? // Computational and Theoretical Chemistry. 2016. Vol. 1084. P. 17–24.
90. Stevenson S., Mackey M.A., Stuart M.A. et al. A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(μ3-O)2@Ih-C80 // J. Am. Chem. Soc. 2008. Vol. 130, No 36. P. 11844–11845.
91. Zhang M., Hao Y., Li X. et al. Facile synthesis of an extensive family of Sc2O@C2n (n=35–47) and Chemical Insight into the Smallest Member of Sc2O@C2(7892)-C70 // J. Phys. Chem. C. 2014. Vol. 118, No 49. P. 28883–28889.
92. Stevenson S. Metal oxide clusterfullerenes. (Yang S., Wang C.-R. (eds.)) In: Endohedral Fullerenes. From Fundamentals to Applications. World Scientific, Singapore. 2014. P. 179–210.
93. Shinohara H., Tagmatarchis N., Kroto S.H. (Foreword by). Endohedral metallofullerenes: Fullerenes with metal inside. Chapter 6. 2015. P. 288.
94. Abella L., Wang Y., Rodríguez-Fortea A., Chen N., Poblet J.M. Review article. Current status of oxide clusterfullerenes // Inorganica Chimica Acta. 2017. Vol. 468. P. 191–104.
95. Dunsch L., Yang S., Zhang L., Svitova A., Oswald S., Popov A.A. Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes // J Am Chem Soc. 2010. Vol. 132, No 15. P. 5413–5421.
96. Chen N., Chaur M.N., Moore C., Pinzon J.R., Valencia R., Rodriguez-Fortea A., Poblet J.M., Echegoyen L. Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40–50) by the introduction of SO2 // Chem. Commun. 2010. Vol. 46. P. 4818–4820.
97. Slanina Z., Uhlík F., Lee S.L., Mizorogi N., Akasaka T., Adamowicz L. Calculated relative yields for Sc2S@C82 and Y2S@C82 // Theoretical Chemistry Accounts. 2011. Vol. 130. P. 549–554.
98. Deng Q. and Popov A.A. Clusters encapsulated in endohedral metallofullerenes: How strained are they? // J. Am. Chem. Soc. 2014. Vol. 136. No 11. P. 4257–4264.
99. Yang S., Chen C., Liu F., Xie Y., Li F., Jiao M., Suzuki M., Wei T., Wang S., Chen Z., Lu X., Akasaka T. An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@C(s)(6)-C82. Sci Rep. 2013. Vol. 3. P. 1487.
100. Zheng H., Zhao X., He L., Wang W.-W. and Nagase S. .Quantum chemical determination of novel C82 monometallofullerenes involving a heterogeneous group // Inorg. Chem. 2014. Vol. 53, No 24. P. 12911– 12917.
101. Meng Q.Y., Wang D.L., Xin G., Li T.C., Hou D.Y. Linear monometallic cyanide cluster fullerenes ScCN@C76 and YCN@C76: a theoretical prediction // Computational and Theoretical Chemistry. 2014. Vol. 1050. P. 83–88.
102. Echegoyen L., Melin F., Chaur M.N. Chapter: Electrochemical properties of endohedral metallofullerenes. In book: Endohedral fullerenes from fundamentals to applications. Publisher: World Scientific, (Editors: Shangfeng Yang, Chun-Ru Wang), 2014. P. 253–279.
103. Gao X., Zhao L.-J., Wang D.-L. Theoretical study on monometallic cyanide cluster fullerenes MCN@C74 (M=Y, Tb) // Journal of Molecular Modeling. 2015. Vol. 21. P. 295.
104. Zhao L.J., Wang D.L. Monometallic cyanide cluster fullerene YCN@C78: a theoretical prediction // Int. J. Quantum Chem. 2015. Vol. 115, No 12, P. 779– 784.
105. Liu F., Wang S., Gao C.-L., Deng Q., Zhu X., Kostanyan A., Westerström R., Jin F., Xie S.-Y. (Dr.), Popov A.A., Greber T., Yang S. Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster // Angewandte Chemie. 2017. Vol. 129, No 7. P. 1856–1860.
Review
For citations:
Gavrylyuk N.A., Akhanova N.Y., Schur D.V., Pomytkin A.P., Veziroglu A., Veziroglu T.N., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Yttrium in fullerenes. Alternative Energy and Ecology (ISJAEE). 2021;(1-3):47-76. (In Russ.) https://doi.org/10.15518/isjaee.2021.01.004