

Characteristics of biohydrogen production from simple and complex substrates with different biopolymeric composition
https://doi.org/10.15518/isjaee.2020.09.010
Abstract
The work investigated the characteristics of the dark fermentation (DF) process of a number of simple (starch, sunflower oil, peptone and their mixture) and complex (dog food, pig feed, sewage sludge (SS)) substrates using a mixed culture, pH control (5.5), at 55°C. Peptone and sunflower oil were characterized by the lowest production of H2, namely 5.0 and 2.3 ml H2/g COD, respectively. The specific hydrogen yield per decomposed starch was 1.55 mol H2/mol. The addition of peptone and sunflower oil to starch reduced the specific yield of hydrogen from starch by 23%. A large difference in hydrogen production was observed during DF of complex substrates. The specific hydrogen yield from dog food was 46.5 ml H2/g COD or 143.4 ml H2/g carbohydrates, from pig feed – 32.1 ml H2/g COD or 91.6 ml H2/g carbohydrates, and from SS – 9.3 ml H2/g COD or 98.0 ml H2/g carbohydrates. Possible relationships between the biopolymeric composition of substrates and characteristics of the DF process were analyzed using Spearman's rank correlation coefficients. The concentration of carbohydrates, as well as the ratio of carbohydrates/proteins and carbohydrates/fats, were the main factors influencing the high specific yield of H2, it's content in biogas, as well as the ratio of H2/soluble metabolites. The concentration of proteins had a statistically significant positive effect on the accumulation of acetate and succinate, and carbohydrates - on the accumulation of caproate.
About the Authors
Yu. V. LittiRussian Federation
Yuriy V. Litti - Senior Researcher, Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences
119071, Moscow, Leninsky prospect, 33, building 2
tel. +7 (926) 369-92-43
Scopus - 4; WoS - 4
SPIN: 1487-7611
Researcher ID: C-4945-2014
A. A. Kovalev
Russian Federation
Andrey A. Kovalev - senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences
109428, Moscow, 1st Institutskiy proezd, building 5
SPIN: 4267-3026
Researcher ID: F-7045-2017
Scopus Author ID: 57205285134
D. A. Kovalev
Russian Federation
Dmitry A. Kovalev - head of the laboratory of bioenergy and supercritical technologies, candidate of technical Sciences
109428, Moscow, 1st Institutskiy proezd, building 5
SPIN: 6513-5547
Researcher ID: K-4810-2015
I. V. Katraeva
Russian Federation
Inna V. Katraeva - associate professor of the chair of water supply, sewage, engineering ecology and chemistry, candidate of technical sciences
603950, Nizhny Novgorod, st. Ilyinskaya, 65
SPIN: 3369-3091
Researcher ID: O-4715-2016
S. N. Parshina
Russian Federation
Laboratory of Microbiology of Anthropogenic Habitats, PhD
119071, Moscow, Leninsky prospect, 33, building 2
SPIN: 1315-8275
ResearcherID: A-8607-2014
Scopus ID: 35511680900
E. A. Zhuravleva
Russian Federation
Elena A. Zhuravleva - junior researcher Laboratory of Microbiology of Anthropogenic Habitats, postgraduate
119071, Moscow, Leninsky prospect, 33, building 2
Scopus Author ID: 57216346570
E. A. Bochkova
Russian Federation
Ekaterina A. Botchkova - Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences, Researcher
119071, Moscow, Leninsky prospect, 33, building 2
SPIN: 5343-1389
Researcher ID: C-1974-2014
Scopus Author ID: 56674603800
References
1. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M. Valorization of biomass: deriving more value from waste. Science 2012;337:695–9. http://dx.doi.org/10.1126/science.1218930 .
2. Ni M, Leung DYC, Sumathy MKH. An overview of hydrogen production from biomass. Fuel Process. Technol 2006;87:461–72. http://dx.doi.org/10.1016/j.fuproc.2005.11.003 .
3. Wang J, Wan W. Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 2009;34:799–811. http://dx.doi.org/10.1016/j.ijhydene.2008.11.015 .
4. De Gioannis G, Muntoni A, Polettini A, Pomi R. A review of dark fermentation hydrogen production from biodegradable municipal waste fractions. Waste Manage 2013;33:1345–61. http://dx.doi.org/10.1016/j.wasman.2013.02.019
5. Vendruscolo F. Starch: a potential substrate for biohydrogen production. Int. J. Energy Res. 2014;39(3):293–302. http://dx.doi.org/10.1002/er.3224 .
6. Cappai G, Gioannis GD, Muntoni A, Spiga D, Boni MR, Polettini A, Pomi R, Rossi A. Biohydrogen Production from Food Waste: Influence of the Inoculum-ToSubstrate Ratio. Sustainability 2018;10(12):4506. http://dx.doi.org/10.3390/su10124506 .
7. Alibardi L, Cossu R. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manage 2016;47:69–77. http://dx.doi.org/10.1016/j.wasman.2015.07.049 .
8. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. Hydrogen and ethanol production from glycerolcontaining wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 2005;100(3):260–5. http://dx.doi.org/10.1263/jbb.100.260 .
9. Dong L, Zhenhong Y, Yongming S, Xiaoying K, Yu Z. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrogen Energ 2009;34(2):812–20. http://dx.doi.org/10.1016/j.ijhydene.2008.11.031 .
10. Bai M, Cheng S, Chao Y. Effects of substrate components on hydrogen fermentation of multiple substrates. Water Sci Technol 2004;50:209–16. http://dx.doi.org/10.2166/wst.2004.0517 .
11. Kim S.-H, Han S.-K, Shin H.-S, Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 2004;29:1607–1616. http://dx.doi.org/10.1016/j.ijhydene.2004.02.018 .
12. Campuzano R, González-Martínez S. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manage 2016;54:3–12. http://dx.doi.org/10.1016/j.wasman.2016.05.016 .
13. Wei S, Xiao B, Liu J. Impact of alkali and heat pretreatment on the pathway of hydrogen production from sewage sludge. Chinese Sci Bull 2010;55(8):777– 86. http://dx.doi.org/10.1007/s11434-009-0591-7 .
14. Lokshina L, Vavilin V, Litti Y, Glagolev M, Sabrekov A, Kotsyurbenko O, Kozlova M. Methane Production in a West Siberian Eutrophic Fen Is Much Higher than Carbon Dioxide Production: Incubation of Peat Samples, Stoichiometry, Stable Isotope Dynamics, Modeling. Water Resour 2019;46(S1):110–25. http://dx.doi.org/10.1134/S0097807819070133 .
15. Litti Y, Nikitina A, Kovalev D, Ermoshin A, Mahajan R, Gunjan G, Nozhevnikova A. Influence of cationic polyacrilamide flocculant onhigh-solids’ anaerobic digestion of sewage sludge under thermophilic conditions. Environ Technol 2017;14:1-26 http://dx.doi.org/10.1080/09593330.2017.1417492 .
16. Carrillo-Reyes J, Buitr ´on G, Moreno-Andrade I, Tapia-Rodr´ıguez AC, Palomo-Briones R, Razo-Flores E, Ju´arez OA, Arreola-Vargas J, Bernet N, Braga AFM, Braga L, Castell ´o E, Chatellard L, Etchebehere C, Fuentes L, Le´on-Becerril E, M´endez-Acosta HO, RuizFilippi G, Venegas ET, Trably E, Wenzel J, Zaiat M, Standardized protocol for determination of biohydrogen potential, MethodsX 2020;7:100754. http://dx.doi.org/10.1016/j.mex.2019.11.027 .
17. Li C, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 2007;37:1–39. http://dx.doi.org/10.1080/10643380600729071 .
18. Elasharnouby O, Hafez H, Nakhla G, Naggar MHE. A critical literature review on biohydrogen production by pure cultures. Int J Hydrogen Energy 2013;38:4945–66. http://dx.doi.org/10.1016/j.ijhydene.2013.02.032 .
19. Kargi F, Pamukoglu MY. Dark fermentation of ground wheat starch for bio-hydrogen production by fedbatch operation. Int J Hydrogen Energy 2009;34(7):2940–6. http://dx.doi.org/10.1016/j.ijhydene.2008.12.101 .
20. Kovalev AA, Kovalev DA, Litti YUV, Katraeva IV. Proizvodstvo biovodoroda v dvukhstadiinom protsesse anaehrobnoi biokonversii organicheskogo veshchestva zhidkikh organicheskikh otkhodov s retsirkulyatsiei ehfflyuenta metantenka. Al'ternativnaya ehnergetika i ehkologiya (ISJAEE) 2020;7-18(330- 341):87-100. http://dx.doi.org/10.15518/isjaee.2020.07-18.087-100 .
21. Bundhoo MAZ, Mohee R. Inhibition of dark fermentative bio-hydrogen production: A review. Int J Hydrogen Energy 2016;41(16):6713–33. http://dx.doi.org/10.1016/j.ijhydene.2016.03.057 .
22. Karadag D, Puhakka JA. Direction of glucose fermentation towards hydrogen or ethanol production through on-line pH control. Int J Hydrogen Energy 2010;35(19):10245–51. http://dx.doi.org/10.1016/j.ijhydene.2010.07.139 .
23. Hawkes F, Hussy I, Kyazze G, Dinsdale R, Hawkes D. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int J Hydrogen Energy 2007;32:172–84. http://dx.doi.org/10.1016/j.ijhydene.2006.08.014 .
24. Kothari R, Kumar V, Pathak VV, Ahmad S, Aoyi O, Tyagi VV. A critical review on factors influencing fermentative hydrogen production. Front BiosciLandmrk 2017;22:1195-220. http://dx.doi.org/10.2741/4542 .
25. Angelidaki I, Sanders W. Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 2004;3:117–29. http://dx.doi.org/10.1007/s11157-004-2502-3 .
26. Gavazza S, Amorim NCS, Kato MT, Florencio L, Amorim ELC. Caproic Acid Formation by Carbon Chain Elongation During Fermentative Hydrogen Production of Cassava Wastewater. Waste Biomass Valorization 2020. http://dx.doi.org/10.1007/s12649-020-01174-3 .
27. Zhu X, Zhou Y, Wang Y, Wu T, Li X, Li D, Tao Y. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels 2017;10:102. http://dx.doi.org/10.1186/s13068-017-0788-y .
28. Heyndrickx M, Vos PD, Vancanneyt M, Ley JD. The fermentation of glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285. Appl Microbiol Biot 1991;34(5):637–47. http://dx.doi.org/10.1007/BF00167914 .
29. Vlassis T, Stamatelatou K, Antonopoulou G, Lyberatos G. Anaerobic treatment of glycerol for methane and hydrogen production. Global NEST J 2012;14(2):149-56. http://dx.doi.org/10.30955/gnj.000864 .
30. Sales A. Production of biodiesel from sunflower oil and ethanol by base catalyzed transesterification [Internet] [Dissertation]. 2011. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-41158
31. Nagase M, Matuo T. Interactions between aminoacid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol Bioeng. 1982;24(10):2227–39. http://dx.doi.org/10.1002/bit.260241009 .
32. Xiao N, Chen Y, Chen A, Feng L. Enhanced Biohydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type. Sci Rep 2014;4(1):3992. http://dx.doi.org/10.1038/srep03992 .
33. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M. Hydrogen production from biomass using dark fermentation. Re-new Sust Energ Rev 2018;91: 665–94. http://dx.doi.org/10.1016/j.rser.2018.04.043 .
34. Yuan X, Shi X, Zhang P., Wei Y, Guo R, Wang L. Anaerobic biohydrogen production from wheat stalk by mixed microflora: Kinetic model and particle size influ-ence. Bioresour Technol 2011;102(19):9007–12. http://dx.doi.org/10.1016/j.biortech.2011.06.045 .
35. Hiroshi Y, Takahiro Y, Akifumi O, Mitsuyoshi I, Yasuo T. Hydrogen Fermentation of Cow Manure Mixed with Food Waste. Jpn Agric Res Q 2010;44:399–404. http://dx.doi.org/10.6090/jarq.44.399 .
36. Cai M, Liu J, Wei Y. Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment. Environ Sci Technol 2004;38(11):3195–202. http://dx.doi.org/10.1021/es0349204 .
37. Xiao B, Liu J. Biological hydrogen production from sterilized sewage sludge by anaerobic selffermentation. J Hazard Mater 2009;168(1):163–7. http://dx.doi.org/10.1016/j.jhazmat.2009.02.008
Review
For citations:
Litti Yu.V., Kovalev A.A., Kovalev D.A., Katraeva I.V., Parshina S.N., Zhuravleva E.A., Bochkova E.A. Characteristics of biohydrogen production from simple and complex substrates with different biopolymeric composition. Alternative Energy and Ecology (ISJAEE). 2020;(25-27):107-121. (In Russ.) https://doi.org/10.15518/isjaee.2020.09.010