Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Crystal structure and properties of the Ti0.70Mo0.30C alloy

https://doi.org/10.15518/isjaee.2020.09.011

Abstract

It is shown in the work that the Ti0.70Mo0.30C alloy can be obtained by the high-temperature synthesis method, which is not inferior to tungsten containing alloys in its mechanical and corrosion-resistant properties. The crystal structure of this alloy has been studied by neutron diffraction. The crystal structure of this alloy is face-centered cubic and is described within the space group Fm3m, in which titanium and molybdenum atoms are substituted and statistically occupy 4 b positions, while carbon atoms statistically occupy octahedral 4 a positions.
The averaged total root-mean-square displacement of atoms in the Ti0.70Mo0.30C alloy was determined from neutron diffraction data by least squares and full-profile analysis of diffraction patterns. It is shown that, in titanium carbide TiC, the replacement of a part of metal atoms (Ti) or nonmetal atoms (C) of one sort with another, which differs from the external valence electron configuration, leads to the appearance of large static distortions in the sublattices of the Ti0.70Mo0.30C ternary alloys. TiC0.30N0.70 and TiC0.30N0.70 compared to TiC alloy. Thus, it has been shown that the replacement of a part of titanium atoms Ti with Mo atoms in titanium carbide TiC due to their different external valence electron configurations leads to the appearance of static distortions in the lattices of the Ti0.70Mo0.30C ternary alloys.
It is shown that the microhardness of the Ti0.70Mo0.30C alloy is 19% higher than the microhardness of the two-component titanium carbide alloy TiC. This can be explained by the fact that the arising static distortions in the sublattices of the three-component Ti0.70Mo0.30C alloys lead to an increase in its microhardness compared to the two-component titanium carbide TiC alloy. The appearance of large static distortions, apparently, leads to deceleration of dislocation motions in the three-component alloy. Consequently, replacing a part of Ti atoms with Mo, as well as apart of C atoms for N in the lattice of titanium carbide TiC, can be a way of changing the dynamic characteristics of its crystal lattice. The results can be used in the field of structural materials science.

About the Authors

I. Khidirov
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

doctor of science in physics and mathematics (1998), professor (2007), head of the laboratory of the of structural transformations in solids states of the Institute of nuclear physics of Uzbekistan Academy sciences

Tashkent, 100214



S. J. Rakhmanov
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

basic doctoral student 

Tashkent, 100214



A. S. Parpiev
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

The junior researcher 

Tashkent, 100214



Sh. A. Makhmudov
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

The senior researcher 

Tashkent, 100214



V. V. Getmanskiy
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

The senior researcher 

Tashkent, 100214



N. B. Ismatov
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

Doctor of Philosophy (PhD) on technical sciences (2018), Senior Researcher of the Laboratory of Radiation physics and solid-state electronics engineering  

Tashkent, 100214



References

1. Burkov, P.V. Strukturoobrazovanie, fazovyi sostav i svoistva kompozitsionnykh materialov na osnove karbida titana: ucheb. posobie / P. V. Burkov. –Tomsk.: izd., TPU, 2011. – 190 s.

2. Burkov, P.V. Vliyanie soderzhaniya molibdena na strukturnye kharakteristiki dvoinogo karbida (Ti, Mo)C [Tekst] / P.V. Burkov, S.N. Kul'kov // Pol-zunovskii vestnik. – 2005. – № 2. (ch. 2). – S. 55-61.

3. Bandyopadhyay, D. The Ti-Mo-C (TitaniumMolybdenum-Carbon) System / D. Bandyopadhyay [et al.] // Journal of Phase Equilibria. –1999. –Vol. 20. – No. 3. – P. 332-336.

4. Shim, J.H. A thermodynamic evaluation of the TiMo-C system / J.H. Shim, C.S. Oh, D.N. Lee // Metallurgical and Materials Transactions B. –1996. –Vol. 27. – No. 6. –P. 955-966.

5. Wang, Z. Evolution of (Ti, Mo)C particles in austenite of a Ti–Mo-bearing steel / Z. Wang [et al.] // Materials and Design. – 2016. –Vol. 109. –P. 361-366.

6. Zueva, A.V. Vliyanie nestekhiometrii i uporyadocheniya na period bazisnoi struktury kubicheskogo karbida titana [Tekst] / A.V. Zueva, A.I. Gusev // FTT. – 1999. –T. 41. –vyp. 7. – S. 1134-1141.

7. Gusev, A.I. Obzory aktual'nykh problem. Prevrashcheniya poryadok-besporyadok i fazovye ravnovesiya v sil'no nestekhiometricheskikh soedineniyakh / A.I. Gusev // Uspekhi fiz. nauk. – 2000. – T. 170. – № 1. – S. 3-40.

8. Samsonov, G.V. Tugoplavkie soedineniya / G.V. Samsonov, I.M. Vinitskii.- M.: Metallurgiya, 1976.- 580 s.

9. Shoyusupov, SH. Neitronnyi difraktometr, sopryazhennyi s komp'yuterom IBM-PS / SH. Shoyusupov [i dr.] // Zhurnal problemy ehnergetiki i informa-tiki. – 2002. – № 2. – S. 11-16.

10. Young, R.A. Profile Scope Functions in Rietveld Refinements / R.A. Young, D.B. Wilas // J. Appl. Cryst. –1982. –Vol. 15. – P. 430 - 438.

11. Rodríguez-Carvajal, J. Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr) / J. Rodríguez-Carvajal // Newsletter. –2001. – Vol. 26. – P. 12-19.

12. Will, G. Powder Diffraction: The Rietveld Method and the Two Stage Method of Determine and Refine Crystal Structures from Powder Diffraction Data / G. Will. – New York: Springer, 2005. – 224 p.

13. Krzhizhanovskaya, M.G. Primenenie metoda Ritvel'da dlya resheniya zadach poroshkovoi difraktometrii / M.G. Krzhizhanovskaya, V.A. Firsova, R.S. Bubnova. Uchebnoe posobie. Sankt-Peterburgskii universitet, 2016. – 67 s.

14. Gusev, A.I. Nestekhiometriya, besporyadok, blizhnii i dal'nii poryadok v tverdom tele / A. I. Gusev. – Moskva.: Fizmatlit, 2007. – 856 c.

15. Rempel', A. A. Nestekhiometriya v tverdom tele / A.A. Rempel', A.I. Gusev. – Moskva.: Fizmatlit, 2018. – 636 s.

16. International Tables for Crystallography. Vol. A: Space-Group Symmetry / Ed. Theo Hahn. – Dordrecht (The Netherlands): Springer, 2005. – 911 p.

17. International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables /Ed. Prince E. – Dordrecht (The Netherlands): 2004.- 1000 p.

18. Khidirov, I. Neitronograficheskoe issledovanie sistem Ti-C, Ti-N, Ti-C-H i Ti-N-H / I. Khidirov.- Saarbrucken (Deutschland): LAP LAMBERT Academic publishing, 2014.-286 r.

19. Khidirov, I. Razdel'noe opredelenie dinamicheskikh i staticheskikh srednekvadratichnykh smeshchenii atomov karbida titana metodom difraktsii neitronov [Tekst] / I. Khidirov, A.S. Parpiev // Kristallografiya. – 2011. – T. 56. – № 3. – S. 504-508.

20. Khidirov, I. Kontsentratsionnaya zavisimost' srednekvadratichnogo smeshcheniya atomov v karbonitride titana TiCxNy [Tekst] / I. Khidirov, S.Dzh. Rakhmanov // Mezhdunarodnyi nauchnyi zhurnal. Al'ternativnaya ehnergetika i ehkologiya. – 2017. – № 13-15. – S. 68-76.


Review

For citations:


Khidirov I., Rakhmanov S.J., Parpiev A.S., Makhmudov Sh.A., Getmanskiy V.V., Ismatov N.B. Crystal structure and properties of the Ti0.70Mo0.30C alloy. Alternative Energy and Ecology (ISJAEE). 2020;(25-27):122-130. (In Russ.) https://doi.org/10.15518/isjaee.2020.09.011

Views: 311


ISSN 1608-8298 (Print)