

Study of the composition and structure of ion-conducting membranes based on polyvinyl alcohol by 1H NMR spectroscopy
https://doi.org/10.15518/isjaee.2021.04-06.093-105
Abstract
One of the alternative types of proton-conducting membranes for a hydrogen-air solid polymer fuel cell is the type of hybrid membranes based on polyvinyl alcohol (PVA) crosslinked with aldehyde, modified with sulfonic acid. Earlier, for the first time, we obtained new ion – conducting membranes based on furfural-crosslinked PVA modified with amino sulfonic acid (ASA) and tetraethoxysilane (TEOS), as well as membranes not crosslinked with furfural (FUR) or unmodified ASA and TEOS, by a liquid-phase synthesis method, in an organic medium-dimethyl sulfoxide. The values of their ionic conductivity and the degree of swelling in water are presented. In this work, the composition and structure of the obtained ion-conducting membranes are studied using liquid-phase nuclear magnetic resonance (NMR) spectroscopy on 1H nuclei. In the 1H NMR spectrum of an ion – conducting membrane not cross-linked with the «PVA/ASA», the signal of free OH groups of PVA is observed to disappear, but at the same time a characteristic triplet at 7.1 m.d. is preserved, having a constant of ~51 Hz and components of the same intensity (1:1:1), which corresponds to protons of 14NH4+ hydrolyzed ASA. The disappearance of the expanded signal at 9.6 m. d. of protons of the free sulfo group of ASA and a narrow singlet signal at 5.8 m. d. of free protons of the NH2 group of ASA indicates the interaction of ASA with OH groups of PVA. In the 1H NMR spectrum of an ion – conducting membrane crosslinked with FUR – «PVA/ASA/FUR», signals of protons of the furan ring of FUR and a signal of its aldehyde group are observed, which is shifted to a strong field, which is determined by the formation of a chemical bond between FUR and the polymer chain of PVA. In the 1H NMR spectra of all membranes modified by ASA, the appearance of a second weaker-field 14NH4 triplet is observed, and in the spectra of a number of ion – conducting hybrid membranes modified by TEOS – «PVA/ASA/FUR/TEOS», signals of the third type of 14NH4+ triplets shifted in a strong field relative to the other two 14NH4+ triplets were detected. The appearance of additional 14NH4+ triplets indicates the formation of several bound forms of the ammonium ion.
About the Authors
O. S. LezovaRussian Federation
Lezova Olga Sergeevna, Junior researcher
199034, St. Petersburg, nab. Makarov 2
D. V. Myasnikov
Russian Federation
Myasnikov Dmitry Vitalievich, Magister
197376, St. Petersburg, Professora Popova str., 5
O. A. Shilova
Russian Federation
Shilova Olga Alexeyevna, Dr. Chem., Professor, Chief Researcher of the Institute of Silicate Chemistry of Russian Academy of Sciences, Scientific Lieder of the Institute of Silicate Chemistry for functional and protective coatings, Academician of the World Academy of Ceramics
199034, St. Petersburg, nab. Makarov 2
197376, St. Petersburg, Professora Popova str., 5
190013, St. Petersburg, Moskovsky Prospekt, 26
A. G. Ivanova
Russian Federation
Ivanova Alexandra Genadievna, Ph. D., Candidate of Chemical Sciences, Associate Professor, Leading Researcher, Acting Head of the Laboratory of Inorganic Synthesis (LNS)
199034, St. Petersburg, nab. Makarov 2
S. I. Selivanov
Russian Federation
Selivanov Stanislav Ivanovich, Doctor of Chemistry, Leading Researcher
199034, St. Petersburg, nab. Makarov 2
References
1. Zhang J., Aili D., Lu S., Li Q., Jiang S.P. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures // Science partner journals. – 2020. – Vol. 2020. – Article ID 9089405. 15 P. https://doi.org/10.34133/2020/9089405.
2. Ivanchev S.S., Myakin S.V. Polimernye membrany dlya toplivnykh ehlementov: poluchenie, struktura, modifitsirovanie, svoistv // Uspekhi khimii. – 2010. – Tom 79, №2. – S. 117–134.
3. Walkowiak-Kulikowska J., Wolska J., Koroniak H. Polymers application in proton exchange membranes for fuel cells (PEMFCs) // Physical Sciences Reviews. 2017. – Vol. 2(8). doi:10.1515/psr-2017-0018.
4. Punniakotti G., Sivasubramanian G., Thangavelua S. A G., Deivanayagama P. Sulfonated poly(vinyl alcohol) /fly ash composite membranes for polymer electrolyte membrane fuel cell applications // Polymer-plastics technology and materials. – 2020. Vol. 59.
5. Baranov I.E., Fateev V.N., Porembskii V.I., Akel'kina S.V., Lyutikova E.K. Samouvlazhnyayushchiisya portativnyi vodorodo-vozdushnyi toplivnyi ehlement dlya aviatsii i robototekhniki // Al'terna-tivnaya ehnergetika i ehkologiya. –2015. –Tom № 21 (185). – S. 137 – 144. DOI: 10.15518/isjaee.2015.21.017.
6. Ismagilov F.R., Vavilov V.E., Miniyarov A.H., Urazbakhtin R.R. Super high-speed electric motor with amorphous magnetic circuit for the hydrogen fuel cell air supply system // International Journal of Hydrogen Energy. – 2018. – Vol. 43, Iss. 24. – P. 11180 – 11189. DOI:10.1016/j.ijhydene.2018.04.185.
7. Dobrovol'skii YU.A., Chikin A.I., Sanginov E.A., Chub A.V. Protonno-obmennye membrany na osnove geteropolisoedinenii dlya nizkotemperatur-nykh toplivnykh ehlementov// Al'ternativnaya ehnergetika i ehkologiya. – 2015. – Tom №4 (168). – S. 22 – 45. doi: 10.15518/isjaee.2015.04.02.
8. Chiche A., Lindbergh G., Stenius I., Lagergrena C. Design of experiment to predict the time between hydrogen purges for an air-breathing PEM fuel cell in dead-end mode in a closed environment // International Journal of Hydrogen Energy. – 2021. – Vol. 46, Iss. 26. – P. 13806 – 13817. DOI: 10.1016/j.ijhydene.2021.01.035.
9. Bekman I.N., Bessarabov D.G., Buntseva I.M. Matematicheskoe i programmnoe obespechenie ehksperimentov po izucheniyu nestatsionarnoi vodorodopronitsaemosti membran, ispol'zuemykh v membrannykh ehlektrolizerakh i vodorodnykh toplivnykh ehlementakh // Al'ternativnaya ehnergetika i ehkologiya. 2015. – Tom № 21 (185). – S. 55-69. doi: 10.15518/isjaee.2015.21.007.
10. Sanginov E. A., Novikova K. S., Dremova N. N., Dobrovol'skii YU. A. Formirovanie v membrane Nafion protonprovodyashchikh polimernykh dobavok na osnove sul'firovannogo sshitogo polistirola // Vysokomolekulyarnye soedineniya (seriya B). – 2019. – T. 61, № 1. – S. 71–80.
11. Chirkov YU.G., Rostokin V.I. Komp'yuternoe modelirovanie aktivnogo sloya katoda toplivnogo ehlementa s polimernym ehlektrolitom: o faktorakh, tormozyashchikh polnotsennoe protekanie protsessa gene-ratsii toka // Al'ternativnaya ehnergetika i ehkologiya (ISJAEE). – 2014. –Tom № 9. – S. 8-21.
12. Chesnokova A., Lebedeva O.V., Malakhova E.A., Raskulova T.V., Kulshresthac V., Kuzmin A.V., Pozdnyakov A.S., Pozhidaev Yu.N. New non-fluoridated hybrid proton exchange membranes based on commercial precursors // International Journal of Hydrogen Energy. –2020. –Vol. 45, Iss. 37. – P. 18716-18730.
13. Yang M., Shi J., Xia Y. Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films // International journal of biological macromolecules. – 2017. https://doi.org/10.1016/j.ijbiomac.2017.10.162.
14. Pagidi A., Arthanareeswaran G., Seepan M.M. Synthesis of highly stable PTFE-ZrP-PVA composite membrane for high-temperature direct methanol fuel cell // International Journal of Hydrogen Energy. – 2020. Vol. 45, Iss. 13. – P. 7829-7837.
15. Gouda M.H., Gouveia W., Elessawy N.A., Sljukic B., Nassr AB.A.A., Santos D.M.F. Simple design of PVA-based blend doped with SO4–(PO4)-functionalised TiO2 as an effective membrane for direct borohydride fuel cells // International Journal of Hydrogen Energy. – 2020. – Vol. 45, Iss. 30. – P. 15226-15238. doi 10.1016/j.ijhydene.2020.04.013.
16. Yagizatli Ya., B.Ulas, Cali A., Sahina A., Ar I. Improved fuel cell properties of Nano-TiO2 doped poly(vinylidene fluoride) and phosphonated poly(vinyl alcohol) composite blend membranes for PEM fuel cells // International Journal of Hydrogen Energy. – 2020. Vol. 45, Iss. 60. – P. 35130 – 35138.
17. Gao L., Kong T., Guo G., Huo Ya. Proton conductive and low methanol permeable PVA-based zwitterionic membranes // International Journal of Hydrogen Energy. – 2016. – Vol. 41, Iss. 44. – P. 20373 – 20384. doi.org/10.1016/j.ijhydene.2016.08.048.
18. Mohanapriya S., Rambabu G., Bhat S. D., Raj V. Hybrid membranes for polymer electrolyte fuel cells operating under various relative humidity values // Journal of Solid State Electrochemistry. – 2017. – Vol. 21. – P. 3437–3448. doi:10.1007/s10008-017-3675-3.
19. Kakati N., J. Maiti, Das G., Hee Lee S., Soo Yoon Y. An approach of balancing the ionic conductivity and mechanical properties of PVA based nanocomposite membrane for DMFC by various crosslinking agents with ionic liquid // International Journal of Hydrogen Energy. –2015. – Vol. 40, Iss. 22. – P. 7114 – 7123. doi 10.1016/j.ijhydene.2015.04.004.
20. Wonga C.Y., Wonga W.Y., Loha K.Sh., Dauda W.R.W., Lima K.L., Khalidb M., Walvekarc R. Development of poly(vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: a review // Polymer reviews. – 2019. https://doi.org/10.1080/15583724.2019.164151.
21. Shahabadi R., Abdollahi M., Sharif A. Preparation, characterization and properties of polymer electrolyte nanocomposite membranes containing silica nanoparticles modified via surface-initiated atom transfer radical polymerization // International Journal of Hydrogen Energy. – 2015. – Vol. 40, Iss. 9. – P. 3749 – 3761. doi 10.1016/j.ijhydene.2015.01.090.
22. Chesnokova A.N., Zhamsaranzhapova T.D., Zakarchevskii S.A., Kulshresta V., Skornikova S.A., Makarov S.S., Pozhidaev YU.N. Vliyanie soderzhaniya tseolita na protonnuyu provodimost' i tekhnicheskie kharakteristiki membran na osnove sshitogo polivi-nilovogo spirta // Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. – 2020. – Tom 10(2). – S.360–367. https://doi.org/10.21285/2227-2925-2020-10-2-360-367.
23. Ebenezer D., Haridoss P. Effect of crosslinked poly (vinyl alcohol)/sulfosuccinic acid ionomer loading on PEMFC electrode performance // International Journal of Hydrogen Energy. – 2017. – Vol. 42, Iss. 7. – P. 4302 – 4310. doi 10.1016/j.ijhydene.2017.01.124.
24. Volkov V. I., Rebrov A.I., SanginoVE.A., Anokhin E.M., Shestakov S.L., Pavlov A.A., Maksimychev A.V., Dobrovol'skii YU.A. Mekhanizm protonnoi provodimosti membran na osnove polivinilo-vogo spirta i fenolsul'fokisloty po dannym YAMR na yadrakh 1N i 13S // Ehlektrokhimiya. – 2009. – Tom 45, № 4. – S. 398–406.
25. Lezova O.S., Zagrebel'nyi O.A., Krasnopee-va E.L., Baranchikov A.S., Shilova O.A., Ivanova A.G. Razrabotka i issledovanie ionoprovodyashchikh membranna osnove sshitogo polivinilovogo spirta // Fizika i khimiya stekla. – 2021. – Tom 47, № 2. – S. 1–11.
26. Lezova O.S., Zagrebel'nyi O.A., Shilova O.A., Ivanova A.G. Razrabotka ionoprovodyashchikh gibridnykh membran na osnove sshitogo polivinilovogo spirta s ispol'zovaniem latinskogo kvadrata // Fizika i khimiya stekla. – 2021. – T. 47, № 1. – S. 78–86.
27. Heatley F. Introduction to NMR and its use in the study of polymer stereochemistry / Editorial by Ibbett R.N. // NMR spectroscopy of polymer. –1993 – P. 1 – 49. https://doi.org/10.1007/978-94-011-2150-7.
28. Hong Y., Miyoshi T. Solid-state NMR characterization of polymer chain structure and dynamics in polymer crystals // Encyclopedia of polymers and composites. – 2013. – P. 1–17. https://doi.org/10.1007/978-3-642-37179-0_27-1.
29. Batamack P., Fraissard J. Proton NMR studies on concentrated aqueous sulfuric acid solutions and Nafion-H // Catalysis letters. – 1997. – Vol. 49. – P. 129–136.
30. Volkov V.I., Pavlov A.A, Sanginov E.A. Ionic transport mechanism in cation-exchange membranes studied by NMR technique // Solid state ionics. – 2011. Vol. 188, Iss. 1. – P. 124–128.
31. Korbag, S. M. Saleh Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film// International Journal of Environmental Studies. – 2016. – Vol. 73 (2). – P. 226–235. DOI: 10.1080/00207233.2016.1143700.
32. Nielander A.C., McEnaney J.M., Schwalbe J.A., Baker J.G., Blair S.J., Wang L., Pelton J.G., Andersen S.Z., Enemark-Rasmussen K., Colic V., Yang S., Bent S.F., Cargnello M., Kibsgaard J., Vesborg P.C.K., Chorkendorff I., Jaramillo T.F. A versatile method for ammonia detection in a range of relevant // ACS Catalysis. – 2019. – Vol. 9. – P. 5797−5802.
33. Lebedev N.N. Khimiya i tekhnologiya osnovnogo organicheskogo i neftekhimicheskogo sinteza / Lebedev N.N. – 2-e izd., 1965. – 736 s.
34. Rostagno M., Shen S., Ghiviriga I., Miller S.A. Sustainable polyvinyl acetals from bioaromatic aldehydes // Polymer chemistry. – 2017. – Vol. 34, № 8. – P. 5049-5059. DOI: 10.1039/c7py00205j.
35. Ismiyarto I., Ngadiwiyana N., Twindarti T., Purbowatiningrum S., Hapsari M., Rafiah F.H., Suyanti, Haq M.S. Synthesis of furfural from water hyacinth (eichorniacroassipes) // IOP Conference series: materials science and engineering. – 2017. – Vol. 172. – P. 012027. DOI:10.1088/1757-899X/172/1/012027.
Review
For citations:
Lezova O.S., Myasnikov D.V., Shilova O.A., Ivanova A.G., Selivanov S.I. Study of the composition and structure of ion-conducting membranes based on polyvinyl alcohol by 1H NMR spectroscopy. Alternative Energy and Ecology (ISJAEE). 2021;(4-6):93-105. (In Russ.) https://doi.org/10.15518/isjaee.2021.04-06.093-105