

Morphological, structural and optical properties of titanium dioxide micropowders
https://doi.org/10.15518/isjaee.2021.04-06.126-138
Abstract
The work is devoted to a comprehensive experimental study of the morphology, structure and optical properties of titanium dioxide micropowders with several of modern analytical equipment. The method for obtaining photoluminescence (PL) and Raman scattering (RS) for titanium dioxide micropowders in microresonator cuvette (photon traps) was described. The powders consisting of close-packed particles in the shape of spherical particles of specified sizes (29-63 μm) were studied. In the photon traps, a certain mode is implemented, which is associated of trapping of the exciting radiation inside of device. It is shown that, at room temperature, intense photoluminescence in titanium dioxide micropowders (2.91 eV) was observed in excitation by the second optical harmonic (λexc = 255.3 nm) of a copper vapor laser. It has been established that in micropowders of titanium dioxide micropowders in photon traps, is possible to observe the phenomenon of "combination opalescence", which leads to the sharp (5–6 orders) increasing in the RS intensity in an ultradispersed medium. The high conversion efficiency of the exciting radiation into the RS signal is explained by the large value of the total path that the exciting radiation photon travels in the dispersed medium in the photon trap. It was found that an insignificant amount of silicon and aluminum impurities is present in titanium dioxide micropowders that not affect to formation of the photoluminescence band in the region of 2.91 eV. The developed method for recording PL and RS opens up wide possibilities for recording weak signals of secondary radiation that is important for inorganic and organic substances, as well as for creating small-sized laser analyzers of chemical compounds which is necessary for solving many practical problems.
About the Authors
I. A. RakhmatullaevUzbekistan
Rakhmatullaev Ilyos Arzimurodovich, Doctor of Sciences in Physics and Mathematics
Tashkent
O. M. Tursunkulov
Uzbekistan
Tursunkulov Oybek Myudinovich, Doctor of Philosophy (Ph.D.) in Physics and Mathematics
Tashkent
A. L. Gusev
Russian Federation
Gusev Alexander Leonidovich, founder and editor-in-chief of the International scientific journal Alternative Energy and Ecology
Sarov
O. F. Tukfatullin
Uzbekistan
Tukfatullin Oskar Faritovich, Doctor of Philosophy (Ph.D.) in Technical Sciences
Tashkent
A. K. Kurbonov
Uzbekistan
Kurbonov Abdulla Kenjaevich, Doctor of Philosophy (Ph.D.) in Physics and Mathematics
Karshi
M. R. Rakhmatullaev
Uzbekistan
Rakhmatullaev Mubin Rakhmanovich, Doctor of Philosophy (Ph.D.) in Physics and Mathematics
Tashkent
M. K. Kodirov
Uzbekistan
Kodirov Mumin Kodirovich, Doctor of Physical and Mathematical Sciences
Tashkent
M. Kh. Davronov
Uzbekistan
Davronov Mamurjon Khamroyevich
Karshi
A. A. Eshkulov
Uzbekistan
Eshkulov Abdugani Abayevich, Doctor of Philosophy (Ph.D.) in Physics and Mathematics
Tashkent
References
1. Chapura O.M., Skomorokhov A.A., Belyaeva E.N., Osipov A.KH., Remarenko N.S., Yas O.A. Issledovanie lyuminestsentnykh svoistv TiO2:Sm3+, poluchennogo zol'-gel' metodom // Vestnik SeveroKavkazskogo federal'nogo universiteta. — 2017. — № 2. — S.30–34.
2. Shul'ga YU.M., Matyushenko D.V., Golyshev A.A., Shakhrai D.V., Molodets A.M., Kabachkov E.N., Kurkin E.N., Domashnev I.A. Issledovanie metodom kombinatsionnogo rasseyaniya fazovykh prevrashchenii nanostrukturirovannogo anataza TiO 2 v rezul'tate udarnogo szhatiya // Pis'ma v ZHTF. — 2010, — T.36, vyp. 18. — S.26–31.
3. Yur'ev S.A. Opticheskie svoistva i radiatsionnaya stoikost' poroshka dioksida titana, modifitsirovannykh nanochastitsami oksidnykh soedinenii. Diss. k-ta tekhn. nauk. — Tomsk: TUSUR, 2015. 157 s.
4. Gurov A.A., Karmanov V.I., Porozova S.E., Shokov V.O. Sintez i svoistva nanoporoshka dioksi-da titana dlya polucheniya funktsional'nykh materia-lov // Vestnik PNIPU. — 2014, — T.16, №1. — S.23–29.
5. Asthana A., Shokuhfar T., Gao Q., Heiden P.A., Friedrich C., Yassar R.S. A Real Time Observation of Phase Transition of Anatase TiO 2 Nanotubes Into Rutile Nanoparticles by In-Situ Joule Heating Inside Transmission Electron Microscope // Advanced Science Letters. — 2010. — V.3. — P.1–6.
6. Kernazhitsky L., Shymanovska V., Gavrilko T., Naumov V., Fedorenko L., Kshnyakin V., Baran J. Room Temperature Photoluminescence of Anatase and Rutile TiO 2 Powders // Journal of Luminescence. 2014. — V.146. — P.199–204.
7. Tang H., Berger H., Schmid P.E., Levy F., Burni G. Photoluminescence in TiO 2 Anatase Single Crystals // Solid State Communications. — 1993. — V.87. P.847–850.
8. Haart L.G., Blasse G. The Observation of Exciton Emission from Rutile Single Crystals // Solid State Chemistry. — 1986. — V.61. — P. 135–137.
9. Serpone N., Lawless D., Khairutdinov R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO 2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? // Journal of Physical Chemistry. — 1995. — V.99. — P.16646-16654.
10. Saraf L.V., Patil S.I., Ogale S.B., Sainkar S.R., Kshirsager S.T. Synthesis of Nanophase TiO2 by Ion Beam Sputtering and Cold Condensation Technique // International Journal of Modern Physics B. — 1998. — V.12. — P.2635–2647.
11. Bassi A.Li., Cattaneo D., Russo V., Bottani C.E. Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry // Journal of Applied Phys-ics. — 2005. — V.98. — P.074305.
12. Šćepanović M.J., Grujić-Brojčin M., DohčevićMitrović Z.D., Popović Z.V. Temperature dependence of the lowest frequency Eg Raman mode in lasersynthesized anatase TiO 2 nanopowder // Journal of Applied Physics A. — 2007. — V.86. — P.365-371.
13. Swamy V., Kuznetsov A., Dubrovinsky L.S., Caruso R.A., Shchukin D.G., Muddle B.C. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO 2 // Physical Review B. — 2005. — V.71. — P. 184302.
14. Nemanich R.J., Solin S.A., Martin R.M. Light scattering study of boron nitride microcrystals // Physical Review B. — 1981. — V.23. — P. 6348.
15. Tiong K.K., Amirtharaj P.M., Pollak F.H., Aspnes D.E. Effects of As + ion implantation on the Raman spectra of GaAs: ‘‘Spatial correlation’’ interpretation // Appl. Phys. Lett. — 1984. — V.44. — P.122.
16. Wang Z., Saxena S.K. Raman spectroscopic s study on pressure-induced amorphization in nanocrystalline anatase (TIO2 ) // Solid State Commun. — 2001. — V.118. — P.75-78.
17. Hearne G. R., Zhao J., Dawe A.M., Pischedda V., Maaza M., Nieuwoudt M.K., Kibasomba P., Nemraoui O., Comins J.D., Witcomb M.J. Effect of grain size on structural transitions in anatase TiO2 : A Raman spectroscopy study at high pressure // Physical Review B. 2004. — V.70. — P. 134102.
18. Rakhmatullaev I.A. Vtorichnoe izluchenie v kondensirovannykh sredakh pri impul'sno-periodicheskom lazernom vozbuzhdenii: Diss. d-ra fiz.mat. nauk. — Tashkent: SaMGU–FIAN, 2008. — 260 s.
19. Goncharov A.P., Gorelik V.S., Kravtsov A.V. Kombinatsionnoe rasseyanie sveta v kondensirovannykh sredakh, pomeshchennykh v fotonnye lovushki // Zhurnal tekhnicheskoi fiziki. – 2007. – T.77, №11. S.78-82.
20. Kurbonov A.K. Vtorichnoe izluchenie v mikro- i nanoporoshkakh pri impul'sno-periodicheskom lazernom vozbuzhdenii: Diss. k-ra fiz.-mat. nauk. — Tashkent: NUUz - FIAN, 2020. — 156 s.
21. Mikhailov M.M., Vladimirov V.M., Vlasov V.A. O razmernom ehffekte v radiatsionnom materialovedenii // Izvestiya TPU. – 2000. — T.303, № 2. S.191-225.
22. Gargas D.J., Toimilmolares M.E., Yang P. Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy // J. Am. Chem. Soc. – 2009. – V.131. – P.2125-2127.
23. Sun X., Yu S., Xu C., Yuan C., Chen B. Room-temperature ultraviolet lasing from zinc oxide microtubes // Jpn. J. Appl. Phys. – 2003. – V.42. – P.1229-1231.
24. Mikhailov M.M., Gordienko P.S., Sen'ko I.V., Pashnina E.V., Bakeeva N.G., Didenko N.A., Usol'tseva T.I. Vliyanie tekhnologii polucheniya na spektry navedennogo pogloshcheniya poroshkov TiO2 (anataz) // Izv. vuzov. Fizika. – 2002. – T.45, № 11. – S.92-93.
25. Zavodinskii V.G., Chibisov A.N. Vliyanie primesei na stabil'nost' i ehlektronnye sostoyaniya dioksida titana v forme anataza // Fizika tverdogo tela. 2009. — T. 53 (3). — S.477–482.
26. Choi, J., Park H., Hoffmann M. R. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO 2 // J. Phys. Chem. C. — 2010. — V.114. — P.783−792.
27. Ryabchuk V.K., Veniaminov A.V., Shaitanov L.L. Fotostimulirovannoe defektoobrazovanie v diokside titana, dopirovannogo Al, Zr, i Nb. Sankt-Peterburg. SPBGU: — 2018. — 108 s.
28. Kuznetsov V., Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments // J. Phys. Chem C. — 2009. — V.113, No.34. — P.15110-15123.
29. Gorelik V.S., Rakhmatullaev I.A. Ustroistvo dlya vozbuzhdeniya vtorichnogo izlucheniya v molekulyarnykh sredakh // Patent RF №2289121. Ofitsial'nyi byulleten'. 2006. – №34.
30. Gorelik V.S., Skrabatun A.V., Bi D. Kombinatsionnoe rasseyanie sveta v mikrokristallakh almaza // Kristallografiya. — 2019. — T.64, №3. — S.402-406.
31. Ohsaka T., Izumi F., Fujiki Y. Raman Spectrum of Anatase, TiO 2 // J. Raman Spectroscopy. — 1978. V.7, No.6. — P.321-324.
32. Kiselyova E.S., Sypchenko V.S., Nikitenkov N.N., Pozdeeva E.V., Zeylun V. Study of the composition and structure of titanium dioxide based coatings deposited by the method of reactive magnetic sputtering // Letters on materials. — 2017. — V.7, No.2. — P.117-119.
Review
For citations:
Rakhmatullaev I.A., Tursunkulov O.M., Gusev A.L., Tukfatullin O.F., Kurbonov A.K., Rakhmatullaev M.R., Kodirov M.K., Davronov M.Kh., Eshkulov A.A. Morphological, structural and optical properties of titanium dioxide micropowders. Alternative Energy and Ecology (ISJAEE). 2021;(4-6):126-138. (In Russ.) https://doi.org/10.15518/isjaee.2021.04-06.126-138