

Plant-microbial fuel cells based on non-invasive International Publishing House for scientific periodicals electrode systems
https://doi.org/10.15518/isjaee.2020.34-36.044-058
Abstract
The work is devoted to studying the mechanisms of generating bioelectric potentials in the root-inhabited-plant system and the creation of plant-microbial fuel cells (PMFC). The construction of experimental PMFC that allows studying the influence of the configuration and material of electrode systems on the values of bioelectric potentials (BEP) generated in the root-inhabited-plant system, on the physiological state of the plant organism depending on environmental factors: mineral nutrition, light regime, soil layer depth, has been developed. The possibility of using the developed technology for measuring BEP to create long-lasting plant-microbial fuel cells based on the use of the electrical activity of plants as an electromotive force was shown. The electrodes were made of various carbon materials. The maximum current value obtained in the experimental PMFC was 83 nA per plant growth area (0.0023 m3). The maximum value of the biopotential obtained from one PMFC on the 16th day of the growth was 150 mV; the average BEP was about 100 mV. Thus, a hybrid system that combines plant and microbial organisms with electrogenic properties is aimed at generating sustainable renewable environmentally friendly energy. PMFC technology allows the production of green energy almost everywhere where plants grow, and is applicable both in the natural environment and for growing agricultural crops in open ground, greenhouses, phytotech complexes and regulated agroecosystems. An agrotechnological energy complex based on PMFC is not only capable of ensuring the production of renewable energy, but will also make it possible to simultaneously obtain high-quality plant products. A bioelectrochemical system based on plant electrogenesis can be used to create low-power unattended energy sources capable of partially supporting the vital activity of plants by supplying power to pumps, light sources based on LEDs, wireless sensor networks (WSNs) and IoT-based sensors, various sensors of environmental parameters and physiological state of plants. It can also be used in scientific research in the field of plant growing, agrophysics, plant biophysics as a biosensor for monitoring the condition of a plant and correcting cultivation technologies.
About the Authors
T. E. KuleshovaRussian Federation
Kuleshova Tatiana Eduardovna - Researcher Ioffe Institute, Researcher Agrophysical Research Institute.
194021, St. Petersburg, Politekhnicheskaya, 26, tel.: (812) 292-71-14; 195220, St. Petersburg, Grazhdansky prospekt, 14, tel.:(812) 535-79-09
A. G. Ivanova
Russian Federation
Ivanova Alexandra Gennadevna - Acting head of Laboratories of Inorganic Synthesis, Leading Researcher.
199034, St. Petersburg, Makarova, 2, tel.: (812) 323-60-14
A. S. Galushko
Russian Federation
Galushko Alexander Sergeevich - leading researcher, Agrophysical Research Institute.
195220, St. Petersburg, Grazhdansky prospekt, 14, tel.:(812) 535-79-09
I. V. Kruchinina
Russian Federation
Kruchinina Irina Yurievna - Director of the Institute of Silicate Chemistry. I.V. Grebenshchikov RAS, Doctor of Technical Sciences.
199034, St. Petersburg, Makarova, 2, tel.: (812) 323-60-14
O. A. Shilova
Russian Federation
Shilova Olga Alekseevna - Chief Researcher, World Academy of Ceramics, professor, Doctor of Chemical Sciences.
199034, St. Petersburg, Makarova, 2, tel.: (812) 323-60-14
O. R. Udalova
Russian Federation
Udalova Olga Rudolfovna - Leading Researcher, head of Department in Agrophysical Research Institute, candidate of biological sciences.
195220, St. Petersburg, Grazhdansky prospekt, 14, tel.:(812) 535-79-09
A. S. Zhestkov
Russian Federation
Zhestkov Alexey Sergeevich - Lead Engineer in Agrophysical Research Institute.
195220, St. Petersburg, Grazhdansky prospekt, 14, tel.:(812) 535-79-09
N. R. Gall
Russian Federation
Gall Nikolay Rostislavovich - head of laboratory in Ioffe Institute, Doctor of Physical and Mathematical Sciences.
194021, St. Petersburg, Politekhnicheskaya, 26, tel.: (812) 292-71-14
G. G. Panova
Russian Federation
Panova Gayane Gennadievna – Leading Researcher, head of Department in Agrophysical Research Institute, candidate of biological sciences.
195220, St. Petersburg, Grazhdansky prospekt, 14, tel.:(812) 535-79-09
References
1. 1. Strik D. P. et al. Green electricity production with living plants and bacteria in a fuel cell //International Journal of Energy Research. - 2008. - T. 32. - №. 9. - S. 870-876.
2. Svistova I. D., Kuvshinova N. M., Nazarenko N. N. Mikrobno-rastitel'nye assotsiatsii netraditsionnykh sakharonosov i produtsentov natural'nykh podslastitelei //Teoreticheskaya i prikladnaya ehkologiya. - 2016. -№. 3. - S. 41-47.
3. Deng H., Chen Z., Zhao F. Energy from plants and microorganisms: progress in plant-microbial fuel cells //ChemSusChem. - 2012. - T. 5. - №. 6. - S. 10061011.
4. Logan B. E. Microbial fuel cells. - John Wiley & Sons, 2008.
5. Bennetto H. P. et al. Electricity generation by microorganisms //Biotechnology education. - 1990. - T. 1. - №. 4. - S. 163-168.
6. Nitisoravut R., Regmi R. Plant microbial fuel cells: A promising biosystems engineering //Renewable and Sustainable Energy Reviews. - 2017. - T. 76. - S. 81-89.
7. Wetser K. et al. Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes //Applied energy. - 2017. - T. 185. - S. 642-649.
8. Wetser K. et al. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode //Applied energy. - 2015. - T. 137. - S. 151157.
9. Strik D. P. et al. Microbial solar cells: applying photosynthetic and electrochemically active organisms //Trends in biotechnology. - 2011. - T. 29. - №. 1. - S. 41-49.
10. Lu L., Xing D., Ren Z. J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell //Bioresource technology. - 2015. - T. 195. - S. 115121.
11. Kaku N. et al. Plant/microbe cooperation for electricity generation in a rice paddy field //Applied microbiology and biotechnology. - 2008. - T. 79. - №. 1. - S. 43-49.
12. Khare A. P., Bundela H. Generation of electricity using vermicompost with different substrates through single chamber MFC approach //Int J Eng Trends Technol. - 2013. - T. 4. - №. 9. - S. 4206-4210.
13. Liu S. et al. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system //International Journal of Photoenergy. - 2013. - T. 2013.
14. Moqsud M. A. et al. Compost in plant microbial fuel cell for bioelectricity generation //Waste Management. - 2015. - T. 36. - S. 63-69.
15. Sheremet V. V., Volchenko N. N., Samkov A. A. Vliyanie sostava pitatel'noi sredy i rastitel'nogo komponenta na ehlektrogenez v rastitel'no-mikrobnom toplivnom ehlemente //Biotekhnologiya i obshchestvo v XXI veke. - 2015. - S. 429-431.
16. Kuleshova T.E., Bushlyakova A.V., Gall N.R. Noninvasive measurement of bioelectric potentials of plants // Technical Physics Letters. - 2019. - V. 45. - № 3. - S. 190-192.
17. Rahimnejad M. et al. Microbial fuel cell as new technology for bioelectricity generation: A review //Alexandria Engineering Journal. - 2015. - T. 54. - №. 3. - S. 745-756.
18. Zheltov YU.I., Panova G.G. Patent RF na poleznuyu model' №108705, Byul. Federal'noi sluzhby po intellektual'noi sobstvennosti, patentam i tovarnym zna.kam. № 27 (2011).
19. Panova G. G. i dr. Nauchno-tekhnicheskie osnovy kruglogodichnogo polucheniya vysokikh urozhaev kachestvennoi rastitel'noi produktsii pri iskusstvennom osveshchenii //Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk. 2015. - №. 4. - S. 17-21.
20. Kuleshova T.E. i dr. Kompleks neinvazivnykh izmerenii opticheskikh svoistv list'ev i biopotentsialov rastenii dlya fitomonitoringa // Materialy II Mezhdunarodnoi nauchnoi konferentsii «Tendentsii razvitiya agrofiziki: ot aktual'nykh problem zemledeliya i rastenievodstva k tekhnologiyam budushchegO», posvyashchennoi pamyati akademika E.I. Ermakova. SPb.: FGBNU AFI. - 2019. - S. 212-219.
21. Medvedev S. S. Fiziologiya rastenii. - BKHV-Peterburg, 2013.
22. Kuleshova T.E. et al. The influence of the spectral properties of the lighting environment on light absorption by lettuce leaves and the net productivity of lettuce // Biophysics. - 2020. - V. 65. - №. 1. - S. 97107.
23. Liu X. et al. Power generation from ambient humidity using protein nanowires //Nature. - 2020. - T. 578. - №. 7796. - S. 550-554.
24. Kalyuzhnyi S. V., Fedorovich V. V. Mikrobnye toplivnye ehlementy //Khimiya i zhizn'. - 2007. - №. 5. - S. 36-39.
Review
For citations:
Kuleshova T.E., Ivanova A.G., Galushko A.S., Kruchinina I.V., Shilova O.A., Udalova O.R., Zhestkov A.S., Gall N.R., Panova G.G. Plant-microbial fuel cells based on non-invasive International Publishing House for scientific periodicals electrode systems. Alternative Energy and Ecology (ISJAEE). 2020;(34-36):44-58. (In Russ.) https://doi.org/10.15518/isjaee.2020.34-36.044-058