Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of the location of local resistances on the stability of the transportation of steam-water mixture during the development of geothermal resources

https://doi.org/10.15518/isjaee.2021.09.057-063

Abstract

Using a new mathematical model for the hydraulic calculation of pipelines transporting a steam-water geothermal heat carrier, which takes into account the influence of gravity forces on the flow parameters, a study was made of the influence of the location of local resistances on the flow stability. The calculation was carried out using the SWIP-S program for a pipeline with characteristics close to typical values at the Mutnovsky geothermal field, where the larg-est geothermal power plants in Russia are located. The pipeline was divided into 4 sections, 4 options were consid-ered with the placement of all local resistances on the first (from the beginning), second, third and fourth sections The flow stability index was calculated, defined as the partial derivative of the pressure drop in a separate section of the pipeline by mass flow. The pressure drop was also calculated. An insignificant effect of the location of local re-sistances along the pipeline route on its total stability index, as well as on the total pressure drop, was revealed. Based on the calculations of the parameters of pipeline by sections, taking into account the significant differences in the lo-cal index of stability, practical recommendations are given on the location of local resistances: in the case of a high risk of instability at the wellhead, including at low flow rates of geothermal fluid, it is recommended to place them at the beginning of the route, i.e. near the well. Similar recommendations are given if it is necessary to reduce the total pressure drop, given that this parameter will sharply increase in the area where local resistances are focused.

About the Authors

N. N. Varlamova
Mining Institute of Far Eastern Branch of the Russian Academy of Sciences – a separate division of the Federal Khabarovsk research center, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Varlamova Natalia Nikolaevna, Junior Re-searcher, Mining institute if the Far Eastern Branch of the Russian Academy of Sciences

Khabarovsk, Russia, 680000, tel.: (4212) 32-79-27



A. N. Shulyupin
Mining Institute of Far Eastern Branch of the Russian Academy of Sciences – a separate division of the Federal Khabarovsk research center, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Shulyupin Aleksandr Nikolaevich, Doctor of Technical Sciences, Interim Director. Mining institute if the Far Eastern Branch of the Rus-sian Academy of Sciences

Khabarovsk, Russia, 680000, tel.: (4212) 32-79-27



References

1. Michalski A., Klitzsch N. First field application of temperature sensor modules for groundwater flow detection near borehole heat exchanger / A. Michalski, N. Klitzsch // Geothermal Energy. – 2019. – V. 7. – № 37. DOI: 10.1186/s40517-019-0152-5.

2. Iry S., Rafee R. Transient numerical simulation of the coaxial borehole heat exchanger with the different diameters ratio / S. Iry, R Rafee // Geothermics. – 2019. – V. 77. – P. 158–165. DOI: 10.1016/j.geothermics.2018.09.009.

3. Christopher S.B., Nigel J.C., Stuart S.E., Dan G. Numerical modelling of deep coaxial borehole heat ex-changers in the Cheshire Basin, UK / S.B. Christopher [et al.] // Computers & Geosciences. – 2021. – V. 152. – № 104752. https://doi.org/10.1016/j.cageo.2021.104752.

4. Chen Y., Huang L., EGS Collab Team. Optimal design of 3D borehole seismic arrays for microearthquake monitoring in anisotropic media during stimula-tions in the EGS collab project / Y. Chen, L. Huang, EGS Collab Team // Geothermics, – 2019. – V. 79, P. 61–66. DOI: 10.1016/j.geothermics.2019.01.009.

5. Zhang J., Xie J., Liu X. Numerical evaluation of heat extraction for EGS with tree-shaped wells / J. Zhang, J. Xie, X. Liu // International Journal of Heat and Mass Transfer. – 2019. – V. 134. – P. 296–310. DOI: 10.1016/j.ijheatmasstransfer.2018.12.171.

6. Xianbiao B., Kunqing J., Yujiang H. Performance analysis of shallow depth hydrothermal enhanced geothermal system for electricity generation / B. Xianbiao, J. Kunqing, H. Yujiang // Geothermics. – 2020. V. 86. – № 101847. https://doi.org/10.1016/j.geothermics.2020.101847.

7. Bertani, R. Geothermal power generation in the world 2010–2014 update report / R. Bertani // Geothermics. – 2016. Vol. 60. – P. 31–43.

8. Smith, J.H., Collection and transmission of geothermal fluids / J.H. Smith // Geothermal energy: review of research and development / Edited by H. Christopher, H. Armstead. – Paris: UNESCO, 1973. – P. 97–105.

9. Rizaldy, Zarrouk S.J. Pressure drop in large diameter geothermal two-phase pipelines / Rizaldy, S.J. Zarrouk // Proceedings 38th New Zealand Geothermal Workshop, New Zealand, 2016. – P. 1–5.

10. Garcia-Gutierrez A. Thermal Efficiency of the Los Humeros Geothermal Field Fluid Transportation Network / A. Garcia-Gutierrez [et al.] // Proceedings World Geothermal Congress 2015. – № 25007.

11. Cheik H.S., Ali H.A. Prefeasibility design of single flash in Asal geothermal power plant 2x25 MW, Djibouti. / H.S. Cheik, H.A. Ali // Proceedings World Geo-thermal Congress 2015. – № 25030.

12. Shulyupin A.N., Chermoshentseva A.A., Varla-mova N.N. Vliyanie geometrii trassy truboprovoda na ustoichivost' parovodyanogo techeniya pri ehkspluatatsii GeOEHS / A.N. Shulyupin, A.A. Chermoshentseva, N.N. Varlamova // Vestnik KRAUNTS. Fiziko-matematicheskie nauki. – 2020. – T. 32. – № 3. – S. 143–153.

13. Shulyupin A.N., Chermoshentseva A.A., Varla-mova N.N. Novye vyzovy pri osvoenii mestorozhdenii parogidroterm s transportirovkoi parovodyanoi smesi / A.N. Shulyupin, A.A. Chermoshentseva, N.N. Varlamova // GIAB. – 2019. № 2. S. 43–49. DOI: 10.25018/0236-1493-2019-02-0-43-49.

14. Dang Z., Yang Z., Yang X., Ishii M. Experimental study on void fraction, pressure drop and flow regime analysis in a large ID piping system / Z. Dang // International Journal of Multiphase Flow. – 2019. – V. 111. –P. 31–41. https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.006.

15. Svid. 2020660438 Rossiiskaya Federatsiya. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EHVM. SWIP-S / A.N. Shulyupin, A.A. Chermoshentseva, I.I. Chernev, N.N. Varlamova; pravoobladatel' Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Khabarovskii Federal'nyi issledovatel'skii tsentr Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk obosoblennoe podrazdelenie Institut gornogo dela Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk. – № 2020619195; zayavl. 18.08.2020; zaregistr. 03.09.2020; opubl. 03.09.2020,1 s.

16. Shulyupin A.N., Varlamova N.N. Opredelenie istinnogo ob"emnogo parosoderzhaniya pri gidravlicheskom raschete truboprovodov parovodyanoi geotermal'noi smesi / A.N. Shulyupin, N.N. Varlamova // Teploehnergetika. – 2021. – № 5. – S. 72–77. DOI: 10.1134/S0040363621050106.

17. Shulyupin A.N. Ustoichivost' rezhima raboty parovodyanoi skvazhiny / A.N. Shulyupin. – Khabarovsk: OOO «AmurprinT», 2018. – 136 s.


Review

For citations:


Varlamova N.N., Shulyupin A.N. Influence of the location of local resistances on the stability of the transportation of steam-water mixture during the development of geothermal resources. Alternative Energy and Ecology (ISJAEE). 2021;(25-27):57-63. (In Russ.) https://doi.org/10.15518/isjaee.2021.09.057-063

Views: 164


ISSN 1608-8298 (Print)