Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Анализ пригодности золошлаковых отходов ТЭС в качестве материалов для хранения водородного топлива

https://doi.org/10.15518/isjaee.2021.09.106-123

Аннотация

Установлены современные тенденции в энергетике, основной из которых является применение альтернативных источников энергии, особенно водорода. Описаны наиболее распространенные способы аккумуляции водорода: аккумуляция сжатого газообразного водорода в резервуарах высокого давления; аккумуляция жидкого водорода в криогенных резервуарах; хранение водорода в химически связанном состоянии; аккумуляция газообразного водорода в носителях с высокой удельной поверхностью. По совокупности преимуществ и недостатков выбраны наиболее перспективные методы аккумуляции: хранение жидкого водорода и хранение водорода в носителях с высокой удельной поверхностью. Выявлено основное требование к материалам для хранения водорода данными методами – высокая удельная поверхность. Обоснована перспективность развития безотходных низкоэмиссионных технологий за счет рециклинга вторичного сырья и разработки способов низкотемпературных технологий синтеза функциональных и конструкционных материалов. Показана применимость крупнотоннажных золошлаковых отходов угольных электростанций в качестве сырья для получения материалов по низкотемпературным технологиям. Описаны традиционные пути использования золошлаковых отходов в качестве сырья, активной добавки и наполнителя при производстве цементов. Представлены современные технологии производства инновационных материалов, обладающих уникальным комплексом свойств, а именно углеродные нанотрубки, кремнеземный аэрогель и геополимерные материалы. Обоснована перспективность использования геополимерных матриц в качестве прекурсора для синтеза ряда материалов, выбран наиболее многообещающий вид материалов – геополимерные пены, применяемые, в основном, в качестве сорбентов для очистки жидкостей и газов или аккумуляции целевых продуктов, а также в качестве теплоизоляционных материалов. Показана возможность получения на основе геополимерных матриц изделий любой формы и размеров без высокотемпературной обработки. Обоснована особая эффективность разработки технологии пористых гранул и порошков, получаемых из геополимерного прекурсора с помощью различных методов. Полученные гранулы могут быть применены в следующих технологиях хранения водорода: непосредственное аккумулирование водорода в пористых гранулах; создание изолирующих слоев агрегатов для хранения жидкого водорода.

Об авторах

Е. А. Яценко
Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова
Россия

Яценко Елена Альфредовна, доктор технических наук, профессор, зав. кафедрой «Общая химия и технология силикатов»

+7 (863)5255135

346428, Ростовская обл., г. Новочеркасск, ул. Просвещения, 132



Б. М. Гольцман
Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова
Россия

Гольцман Борис Михайлович, кандидат технических наук, доцент кафедры «Общая химия и технология силикатов»

346428, Ростовская обл., г. Новочеркасск, ул. Просвещения, 132



В. И. Паршуков
Российское энергетическое агентство, Ростовский филиал
Россия

Паршуков Владимир Иванович, директор

+7 (863) 242-48-65

344011, г. Ростов-на-Дону, пр-т Буденновский, 83



Список литературы

1. Фатеев, В.Н. Проблемы аккумулирования и хранения водорода / В.Н. Фатеев [и др.] // Chemical Problems. – 2018. – No. 4 (16). – С. 453–483.

2. Züttel, A. Materials for hydrogen storage / A. Züttel // Materials Today. – 2003. – Vol. 6(9). – P. 24-33.

3. Baibikov, A.S. Perspective hydrogen accumulators and ecologic energetics of transport / A.S. Baibikov // International Scientific Journal for Alternative Energy and Ecology. – 2009. – № 10 (78). – P. 20–32.

4. Вахрушев, А.В. Моделирование процессов аккумуляции углеводородов наноструктурами А.В. Вахрушев, А.М. Липанов, М.В. Суетин. – Москва-Ижевск: Институт компьютерных исследований; НИЦ «Регулярная и хаотическая динамика», 2008. – 118 с.

5. Шумский, К.П. Вакуумные аппараты и приборы химического машиностроения / К. П. Шумский. – М.: Машгиз, 1963. – 556 с.

6. Gollakota, A.R.K. Shu Progressive utilisation prospects of coal fly ash: A review / A.R.K. Gollakota, V. Volli, C.-M. Shu // Science of the Total Environment. – 2019. – Vol. 672. – P. 951–989.

7. Ferrarini, S.F. Integrated synthesis of zeolites using coal fly ash: element distribution in the products, washing waters and effluent / S.F. Ferrarini [et al.]// Journal of Brazilian Chemical Society. – Vol. 27(11). – P. 2034–2045.

8. Garcia-Gonzalez, C.A. Supercritical drying of aerogels using CO2: effect of extraction time on the end material textural properties / C.A. Garcia-Gonzalez [et al.] // Journal of Supercritical Fluids. – 2012. – Vol. 66. – P. 297–306.

9. Javadian, H. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies / H. Javadian [et al.] // Arabian Journal of Chemistry. – 2015. – Vol. 8. – P. 837–849.

10. Drozhzhin, V.S. Formation Processes and Main Properties of Hollow Aluminosilicate Microspheres in Fly Ash from Thermal Power Stations / V.S. Drozhzhin [et al.] // Solid Fuel Chemistry. – 2008. – Vol. 42(2). – P. 107–119.

11. Khachatryan, A.K. Graphite-to-diamond transformation induced by ultrasound cavitation / A.K. Khachatryan [et al.] // Diamond and Related Materials. – 2008. – Vol. 17(6). – P. 931–936.

12. Salah, N. Formation of carbon nanotubes from carbon-rich fly ash: growth parameters and mechanism / N. Salah [et al.] // Materials and Manufacturing Processes. – 2016. – Vol. 31(2). – P. 146–156.

13. Lee, W.K.W. The effect of ionic contaminants on the early age properties of alkali-activated fly ash based cements / W.K.W. Lee, J.S.J. Van-Deventer // Cement and Concrete Research. – 2002. – Vol. 32. – P. 577–584.

14. Venkateswara Rao, A. Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels / A. Venkateswara Rao, D. Haranath // Microporous and Mesoporous Materials. – 1999. – Vol. 30(2-3). – P. 267–

15.

16. Maleki, H. An overview on silica aerogels synthesis and different mechanical reinforcing strategies / H. Maleki, L. Durães, A. Portugal // Journal of Non-Crystalline Solids. – 2014. – Vol. 385. – P. 55–74.

17. Hench, L.L. The sol-gel process / L.L. Hench, J.K. West // Chemical Reviews. – 1990. – Vol. 90(1). – P. 33–72.

18. Strom, R.A. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation / R.A. Strom [et al.] // Journal of Sol-Gel Science and Technology. – 2007. – Vol. 41(3). – P. 291–298.

19. Papa, E. Porosity and insulating properties of silica-fume based foams / Papa E. [et al.] // Energy and Buildings. – 2016. – Vol. 131. – P.223–232.

20. Samson, G. Thermomechanical performance of blended metakaolin-GGBS alkali-activated foam concrete / G. Samson, M. Cyr, X.X. Gao // Construction and Building Materials. – 2017. – Vol. 157. P. 982–993.

21. Davidovits, J. Geopolymers - inorganic polymeric new materials / J. Davidovits // Journal of Thermal Analysis. – 1991. – Vol. 37. – P. 1633–1656.

22. Panias, D. Development of inorganic polymeric materials based on fired coal fly ash / D. Panias, I.P. Giannopoulou // Acta Metallurgica Slovaca. – 2006. – Vol. 12(12). – P. 321–327.

23. Malhotra, V.M., Introduction: sustainable development and concrete technology / V.M. Malhotra // Concrete International. – 2002. – Vol. 24(7). – P. 22.

24. Bhandari, A. Synthesis of Iron-Nanoparticles from Solid Industrial Waste for Mine Water Treatment: Master´s Thesis / A. Bhandari. – Lappeenranta University of Technology, 2017. – 71 p.

25. Shi, X. Durability of steel reinforced concrete in chloride environments: an overview / X. Shi [et al.] // Construction and Building Materials. – 2012. – Vol. 30. – P. 125–138.

26. Davidovits, J. Properties of geopolymer cements / J. Davidovits // First International Conference on Alkaline Cement and Concrete. – 1994. – P. 131–149.

27. Favier, A. Flow properties of MK based geopolymer paste. A comparative study with standard portand cement pastes / A. Favier [et al.] // Soft Matter. – 2014. – Vol. 10(8). – P. 1134–1141.

28. Böke, N. New synthesis method for the production of coal fly ash-based foamed geopolymers / N. Böke [et al.] // Construction and Building Materials. – 2015. – Vol. 75. – P. 189–199.

29. vanJaarsveld, J.G.S. Potential use of geopolymeric materials to immobilize toxic metals: part I. Theory and applications / J.G.S. vanJaarsveld, J.S.J. vanDeventer, L. Lorenzen // Minerals Engineering. – 1997. – Vol. 10. – P. 659–669.

30. Davidovits, J. Geopolymers and geopolymeric materials / J. Davidovits // Journal of Thermal Analysis. – 1989. – Vol. 35. – P. 429–441.

31. Davidovits, J. Geopolymer Chemistry and Properties / Davidovits, J. // Proceedings of the 1st International Conference on Geopolymer ’88. – Compiegne, 1988. – Vol. 1. P. 25-48.

32. Davidovits, J. Geopolymer Chemistry and Applications, 5th ed. / J. Davidovits. – France: Institut Géopolymère, 2020. – 680 p.

33. Kanuchova, M. Influence of Mechanical Activation of Fly Ash on the Properties of Geopolymers Investigated by XPS Method / M. Kanuchova [et al.] // Environmental Progress & Sustainable Energy. – 2016. – Vol. 35(5). – P. 1338–1343.

34. Bell, J.L. Preparation of ceramic foams from metakaolin-based geopolymer gels / J. L. Bell, W. M. Kriven // Developments in Strategic Materials: Ceramic Engineering and Science Proceedings / H.T. Lin [et al.]. – Daytona Beach, Florida, 2008. – P. 97–112.

35. Nyale, S.M. Synthesis and characterization of coal fly-ash-based foamed geopolymer / S.M. Nyale [et al.] // Procedia Environmental Sciences. – 2013. – Vol. 18. – P. 722–730.

36. Henon, H. Potassium geopolymer foams made with a silica fume pore forming agent for thermal insulation / H. Henon [et al.] // Journal of Porous Materials. – 2013. – Vol. 20(1). – P. 37–46.

37. Zhang, Z. Geopolymer foam concrete: an emerging material for sustainable construction / Z. Zhang [et al.] // Construction and Building Materials. – 2014. – Vol. 56. – P. 113–127.

38. Prud'homme, E. Alkali-activated concrete binders as inorganicc thermal insulator materials / E. Prud'homme, E. Joussein, S. Rossignol // Handbook of Alkali-Activated Cements, Mortars and Concretes / F. Pachego-Torgal [et al.]. – Woodhead Publishing, 2015. – P. 687–728.

39. Masi, G. The influence of short fibres and foaming agents on the physical and thermal behaviour of geopolymer composites / G. Masi [et al.] // Advances in Science and Technology. – 2014. – Vol. 92. – P. 56–61.

40. Hlavaček, P. Alkali-activated fly ash foams — synthesis, chemo-physical properties and microstructure modelling / P. Hlavaček, V. Šmilauer, F. Škvara // Advances in Science and Technology. – 2014. – Vol. 92. – P. 14–19.

41. Sanyan, J.G. Physical and mechanical properties of lightweight aerated geopolymer / J.G. Sanyan [et al.] // Construction and Building Materials. – 2015. – Vol. 79. – P. 236–244.

42. Jones, M.R. Preliminary views on the potential of foamed concrete as a structural material / M.R. Jones, A. McCarthy // Magazine of Concrete Research. – 2005. – Vol. 57(1). – P. 21-31.

43. Ducman, V. Characterization of geopolymer flyash based foams obtained with the addition of Al powder or H2O2 as foaming agents / V. Ducman, L. Korat // Materials Characterization. – 2016. – Vol. 113. – P. 207–213.

44. Asl, S.M.H. Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: A review / S.M.H. Asl [et al.] // Fuel. – 2018. – Vol. 217. – P. 320–342.

45. Beck, J.S. Molecular or supramolecular templating: defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves / J.S. Beck [et al.]// Chemistry of Materials. – 1994. – Vol. 6(10). – P. 1816–1821.

46. Bukhari, S.S. Conversion of CFA into zeolite utilizing microwave and ultrasound energies: a review / S.S. Bukhari [et al.] // Fuel. – 2015. – Vol. 140. – P. 250–266.

47. Dhokte A.O. [et al.] Synthesis, characterization of mesoporous silica materials from waste CFA for the classical Mannich reaction // Journal of Industrial and Engineering Chemistry. – 2011. – Vol. 17(4). – P. 742–746.

48. Saxena, S. Defluoridation kinetics over lime stone slurry impregnated fly ash / S. Saxena [et al.] // International Journal of Scientific Research. – 2013. – Vol. 2(3). – P. 17–19.

49. Li, L. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution / Lin Li, Shaobin Wang, Zhonghua Zhu // Journal of Colloid and Interface Science. – 2006. – Vol. 300. – P. 52–59.

50. Siyal, A.A. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes / A.A. Siyal [et al.] // Journal of Environmental Management. – 2018. – Vol. 224. – P. 327–339.

51. Bai, C. Processing, properties and applications of highly porous geopolymers: A review / C. Bai, P. Colombo // Ceramics International. – 2018. – Vol. 44. – P. 16103–16118.

52. Cerolini, S. Moisture buffering capacity of highly absorbing materials / S. Cerolini [et al.] // Energy and Buildings. – 2009. – Vol. 41. – P. 164–168.

53. Pimraksa, K. Geopolymer/Zeolite composite materials with adsorptive and photocatalytic properties for dye removal / K. Pimraksa [et al.] // PLoS ONE. – 2020. – Vol. 15(10). - # e0241603.

54. De Rossi, A. Waste-based geopolymeric mortars with very high moisture buffering capacity / A. De Rossi [et al.] // Construction and Building Materials. – 2018. – Vol. 191. – P. 39–46.

55. Zaidi, S.F.A. Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations / S.F.A. Zaidi [et al.] // Construction and Building Materials. – 2017. – Vol. 157. – P. 994–1000.

56. Masi, G. A comparison between different foaming methods for the synthesis of light weight geopolymers / G. Masi [et al.] // Ceramics International. – 2014. – Vol. 40. – P. 13891–902.

57. Palmero, P. Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization / P. Palmero [et al.] // Ceramics International. – 2015. – Vol. 41. – P. 12967–12979.

58. Novais, R.M. Porous biomass fly ash-based geopolymers with tailored thermal conductivity / R.M. Novais [et al.] // Journal of Cleaner Production. – 2016. – Vol. 119. – P. 99–107.

59. Hajimohammadi, A. Alkali activated slag foams: the effect of the alkali reaction on foam characteristics / A. Hajimohammadi [et al.] // Journal of Cleaner Production. – 2017. – Vol. 147. – P. 330–339.

60. Novais, R.M. Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams / R.M. Novais [et al.] // Ceramics International. – 2018. – Vol. 44. – P. 6242–6249.

61. Dembovska, L. The use of different by-products in the production of lightweight alkali activated building materials / L. Dembovska [et al.] // Construction and Building Materials. – 2017. – Vol. 135. – P. 315–322.

62. Novais, R.M. Innovative application for bauxite residue: red mud-based inorganic polymer spheres as pH regulators / R.M. Novais [et al.] // Journal of Hazardous Materials. – 2018. – Vol. 358. – P. 69–81.

63. Feng, J. Development of porous fly ash-based geopolymer with low thermal conductivity / J. Feng [et al.] // Materials and Design. – 2015. – Vol. 65. – P. 529–533.

64. Wu, J. Preparation and characterization of ultralightweight foamed geopolymer (UFG) based on fly ashmetakaolin blends / J. Wu [et al.] // Construction and Building Materials. – 2018. – Vol. 168. – P. 771–779.

65. Alghamdi, H. Novel synthesis of lightweight geopolymer matrices from fly ash through carbonate-based activation / H. Alghamdi, N. Neithalath // Materials Today Communications. – 2018. – Vol. 17(209). – P. 266–277.

66. Novais, R.M. Geopolymer foams: An overview of recent advancements / R.M. Novais, R.C. Pullar, J.A. Labrincha // Progress in Materials Science. – 2020. – Vol. 109. – # 100621.

67. Petlitckaia, S. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide / S. Petlitckaia, A. Poulesquen // Ceramics International. – 2019. – Vol. 45. – P. 1322–1330.

68. Cilla, M.S. Geopolymer foams by gelcasting / M.S. Cilla, P. Colombo, M. Raymundo Morelli // Ceramics International. – 2014. – Vol. 40. – P. 5723–5730.

69. Bai, C. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant / C. Bai, P. Colombo // Ceramics International. – 2017. – Vol. 43. – P. 2267–2273.

70. Lassinantti Gualtieri, M. Preparation of phosphoric acid-based geopolymer foams using limestone as pore forming agent – thermal properties by in situ XRPD and Rietveld refinements / M. Lassinantti Gualtieri, M. Romagnoli, A.F. Gualtieri // Journal of the European Ceramic Society. – 2015. – Vol. 35(11). – P. 3167–3178.

71. Vaou, V. Thermal insulating foamy geopolymers from perlite / V. Vaou, D. Panias // Minerals Engineering. – 2010. – Vol. 23(14). – P. 1146–1151.

72. Bai, C. Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent / C. Bai [et al.] // Journal of the European Ceramic Society. – 2018. – Vol. 38. – P. 799–805.

73. Cui, Y. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material / Y. Cui [et al.] // Journal of Building Engineering. – 2018. – Vol. 20. – P. 21–29.

74. Novais, R.M. Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers / R.M. Novais [et al.] // Materials and Design. – 2016. – Vol. 108. – P. 551–559.

75. Haq, E.U. Microwave synthesis of thermal insulating foams from coal derived bottom ash / E.U. Haq, S.K. Padmanabhan, A. Licciulli // Fuel Processing Technology. – 2018. – Vol. 130. – P. 263–267.

76. Hassan, H.S. Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam / H.S. Hassan [et al.] // Waste Management. – 2018. – Vol. 80. – P. 235–240.

77. Zhang, Z. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete / Z. Zhang [et al.] // Cement and Concrete Composites. – 2015. – Vol. 62. – P. 97–105.

78. Ngouloure, Z.N.M. Recycled natural wastes in metakaolin based porous geopolymers for insulating applications / Z.N.M. Ngouloure [et al.] // Journal of Building Engineering. – 2015. – Vol. 3. – P. 58–69.

79. Prud’homme, E. Silica fume as porogent agent in geo-materials at low temperature / E. Prud’homme [et al.] // Journal of the European Ceramic Society. – 2010. – Vol. 30. – P. 1641–1648.

80. Xu, F. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method / F. Xu [et al.] // Ceramics International. – 2018. – Vol. 44. – P. 19989–19997.

81. Shu-heng, Q. Preparation of phosphoric acidbased porous geopolymers / Q. Shu-heng [et al.] // Applied Clay Science. – 2010. – Vol. 50(4). – P. 600–603.

82. Yatsenko, E.A. Peculiarities of foam glass synthesis from natural silica-containing raw materials E.A. Yatsenko [et al.] // Journal of Thermal Analysis and Calorimetry. – 2020. – Vol. 142(1). – P. 119–127.

83. Yatsenko, E.A. Study of synthesis processes of heat-insulating silicate materials for external protection of steel oil pipelines / E.A. Yatsenko, B.M. Goltsman // CIS Iron and Steel Review. – 2020. – Vol. 20. – P. 33–36.

84. Yatsenko, E.A. Development of fiber-glass composite coatings for protection of steel oil pipelines from internal and external corrosion / E.A. Yatsenko, A.V. Ryabova, B.M. Goltsman // Chernye Metally. – 2019. – Vol. 2019(12). – P. 46–51.

85. Smolii, V.A. Development of Compositions and Technological Parameters for the Synthesis of Cellular Glass Heat-Insulation Construction Materials with Prescribed Density / V.A. Smolii [et al.] // Glass and Ceramics. – 2016. – Vol. 73(5-6). – P. 219–221.

86. Bessmertniy, V. The glass powders’ dispersion effect on the glass-reinforced concrete performance properties / V. Bessmertniy [et al.] // Materials Science Forum. – 2020. – Vol. 1011. – P. 85–91.

87. Samchenko, S.V. Studying the processes of early structure formation of a modified cement paste / S.V. Samchenko, M.A. Abramov, E.S. Egorov // IOP Conference Series: Materials Science and Engineering. – 2020. – Vol. 971(2). – # 022052.

88. Ketov, A. Amorphous silica wastes for reusing in highly porous ceramics / A. Ketov [et al.] // International Journal of Applied Ceramic Technology. – 2021. – Vol. 18(2). – P. 394–404.

89. Kazmina, O.V. Lightweight cement mortar with inorganic perlite microspheres for equipping oil and gas production wells / O.V. Kazmina, N.A. Mitina, K.M. Minaev // Magazine of Civil Engineering. – 2020. – Vol. 93(1). – P. 83–96.

90. Klimenko, N.N. Application of Secondary Carbon Fiber for Reinforcing Composite Material Based on Alkali-Activated Blast-Furnace Slag / N.N. Klimenko [et al.] // Glass and Ceramics. – 2021. – Vol. 77(11-12). – P. 429–431.

91. Reka, A.A. New optimized method for lowtemperature hydrothermal production of porous ceramics using diatomaceous earth / A.A. Reka, B. Pavlovski, P. Makreski // Ceramics International. – 2017. – Vol. 43(15). – P. 12572–12578.

92. Jivotkov, O. Silicate brick with reduced density and thermal conductivity / O. Jivotkov [et al.] // Materials Science Forum. – 2020. – Vol. 1011. – P. 37–43.


Рецензия

Для цитирования:


Яценко Е.А., Гольцман Б.М., Паршуков В.И. Анализ пригодности золошлаковых отходов ТЭС в качестве материалов для хранения водородного топлива. Альтернативная энергетика и экология (ISJAEE). 2021;(25-27):106-123. https://doi.org/10.15518/isjaee.2021.09.106-123

For citation:


Yatsenko E.A., Goltsman B.M., Parshukov V.I. Analysis of suitability of TPP ash-slag waste as materials for hydrogen fuel storage. Alternative Energy and Ecology (ISJAEE). 2021;(25-27):106-123. (In Russ.) https://doi.org/10.15518/isjaee.2021.09.106-123

Просмотров: 331


ISSN 1608-8298 (Print)