

Prospects for the use of new medical technologies based on restructured zinc in the conditions of climate change and ecology
https://doi.org/10.15518/isjaee.2021.09.160-174
Abstract
Changes in ecology and climate are associated with the strain of the mechanisms of adaptation of organisms to changing environmental conditions. Trace elements are an integral part of the metabolism and are associated with the processes of vital activity of biological objects. Restructured zinc opens up new horizons for the study and application of trace elements in biology and medicine. The results of the restructured zinc obtained in a new type of reactor (A. N. Frumkin Institute). By prolonged thermodynamic action on the metal melt, chemically pure zinc was obtained, which has a new structure and, consequently, new chemical and physical properties. To assess the chemical activity of zinc, the samples were subjected to oxidation on a thermogravimetric analyzer TGA Q500 InterTech Corporation in a dehumidified air environment in a dynamic mode. The temperature range of measurements was 35-600 °C at a heating rate of 10 °C / min.
About the Authors
E. M. SolovyovRussian Federation
Solovyov E. M., Ph/D., Major constructor
Moscow, 129327
D. A. Kirillov
Russian Federation
Kirillov D. A., PhD medicine
Moscow, 129327
B. V. Spitsyn
Russian Federation
Spitsyn B. V., D. Sc chemistry Major Researcher
119991, Moscow GSP-1, Leninsky Prospekt, 31
M. R. Kiselev
Russian Federation
Kiselev M. R., D Ph chemistry Senyor
119991, Moscow GSP-1, Leninsky Prospekt, 31
A. V. Kvachakidze
Russian Federation
Kvachakidze A.V., specialist
Moscow, 129327
B. A. Sorokin
Russian Federation
Sorokin B. A., D Ph medical, specialist
Moscow, 129327
Yu. S. Drozhzhina
Russian Federation
Drozhzhina Yu. S., specialist
Moscow, 129327
References
1. K fizicheskoi modeli obrazovaniya vakansionnykh klasternykh trubok i izmenenii svoistv metallov pri tsentrobezhnom dinamicheskom lit'e. E.M. Solov'ev, V. I. Novikov, B. V. Spitsyn, M. R., Kiselev, B. A. Sorokin, A. V. Kvachakidze (Zhurnal «Al'ternativnaya ehnergetika i ehkologiYA» https://doi.org/10.15518/isjaee.2016.15-18.096-103).
2. Issledovanie vakansionnoi sistemy restukturirovannogo tsinka metodom annigilyatsii pozitronov E.M. Solov'ev, B.V. Spitsyn, R.S. Laptev, A.M. Lider, YU.S. Bordulev, A.A. Mikhailov (Zhurnal tekhnicheskoi fiziki 2018. tom 88, vyp. 6).
3. Klinicheskoe znachenie defitsita tsinka dlya zdorov'ya detei: novye vozmozhnosti lecheniya i profilaktiki Original'naya stat'ya opublikovana na saite RMZH (Russkii meditsinskii zhurnal): https://www.rmj.ru/articles/pediatriya/Klinicheskoe_znachenie_deficita_cinka_dlya_zdorovyya_detey_novye_vozmoghnosti_lecheniya_i_profilaktiki/#ixzz6ytU2xFvl.
4. National Institutes of Health: Vitamin K - Fact Sheet for Health Professionals. https://ods.od.nih.gov/factsheets/vita-minKHealthProfessional/urisimplehttps://ods.od.nih.gov/factsheets/vita-minK-HealthProfessional/ Accessed June 3, 2020.
5. Radilov A. S. Ehksperimental'naya otsenka toksichnosti i opasnosti nanorazmernykh materialov - Nanotekhnologii i nauka 2009 №1 s 86-89). Glushchenko N.N. Toksichnost' nanochastits tsinka i ego biologicheskie svoistva/ N.N. Glushchenko, A.V. Skal'nyi // Aktual'nye problemy transportnoi meditsiny. — 2010. —№3, (21). — S. 118–121.
6. Maret W. Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals // Biometals. 2009; 22: 1: 149-157.
7. https://www.spandidos-publications.com /10.3892/ijmm.2020.4790 Zinc and SARS CoV 2: A molecular modeling study of Zn interactions with RNA dependent RNA polymerase and 3C like proteinase enzymes.
8. Beyersmann D and Haase H: Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 14:331–341. 2001.
9. Marreiro D do N, Cruz KJ, Morais JB, Beserra JB, Severo JS and Soares de Oliveira AR: Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel). 6:242017.
10. Maywald M, Wessels I and Rink L: Zinc signals and immunity. Int J Mol Sci. 18:22222017.
11. Miller BD and Welch RM: Food system strategies for preventing micronutrient malnutrition. Food Policy. Wolters Kluwer-Medknow Publications; pp. 115–128. 2013.
12. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease Ananda S. Prasad Author NotesAdvances in Nutrition, Volume 4, Issue 2, March 2013, Pages 176–190.
13. Dowd, P.S.; Kelleher, J.; Guillou, P.J. Tlymphocyte subsets and interleukin-2 production in zincdeficient rats. Br. J. Nutr. 1986, 55, 59–69.
14. Fernandes, G.; Nair, M.; Onoe, K.; Tanaka, T.; Floyd, R.; Good, R.A. Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc. Natl. Acad. Sci. USA 1979, 76, 457–461.
15. Nutrients 2018, 10, 199 14 of 19.
16. Golden, M.H.; Jackson, A.A.; Golden, B.E. Effect of zinc on thymus of recently malnourished children. Lancet 1977, 2, 1057–1059.
17. DePasquale-Jardieu, P.; Fraker, P.J. The role of corticosterone in the loss in immune function in the zincdeficient A/J mouse. J. Nutr. 1979, 109, 1847–1855.
18. Aydemir, T.B.; Liuzzi, J.P.; McClellan, S.; Cousins, R.J. Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-γ expression in activated human T cells. J. Leukoc. Biol. 2009, 86, 337–348.
19. Wessels, I.; Maywald, M.; Rink, L. Zinc as a gatekeeper of immune function. Nutrients 2017, 9, 1286.
20. Sinergidnoe primenenie tsinka i vitamina S dlya podderzhki pamyati, vnimaniya i snizheniya riska razvitiya zabolevanii nervnoi sistemy Zhurnal: Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2017;117(7):112-1190.
21. Huskisson E., Maggini S., Ruf M. The influence of micronutrients on cognitive function and performance // J. Int. Med. Res. 2007, v. 35, p. 1–19.
22. Maylor E. A., Simpson E. E., Secker D. L. et al. Effects of zinc supplementation on cognitive function in healthy middle-aged and older adults: the ZENITH study // Br. J. Nutr. 2006, p. 752–760.
23. Yoan Cherasse * and Yoshihiro Urade: Dietary Zinc Acts as a Sleep Modulator Int. J. Mol. Sci. 2017, 18, 2334.
24. Tamano H., Koike Y., Nakada H. et al. Signifi cance of synaptic Zn2+ signaling in zincergic and non zincergic synapses in the hippocampus in cognition // J. Trace Elm. Med. Biol. 2016 Vol. 38 P. 93–98.
25. Hie M., Tsukamoto I. Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone // Eur. J.Pharmacol. 2011 Vol. 668, N1. R. 140–146.
26. Zhuravleva E.A., Kamenskaya E.N., Bul'ina E.A. i soavt. Rol' tsinka i medi v mikronutrientnom statuse novorozhdennogo // Ehkologiya cheloveka. 2007 № 11 S. 23–28.
27. Williams R.J. Zinc in evolution // J. Inorg. Biochem. 2012 Vol. 111 P. 104–109.
28. Zhuravleva E.A., Kamenskaya E.N., Bul'ina E.A. i soavt. Rol' tsinka i medi v mikronutrientnom statuse novorozhdennogo // Ehkologiya cheloveka. 2007 № 11 S. 23–28.
29. Sinergidnoe primenenie tsinka i vitamina S dlya podderzhki pamyati, vnimaniya i snizheniya riska razvitiya zabolevanii nervnoi sistemy Zhurnal: Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2017;117(7):112-119.
30. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN: 978-1-60692-217-0. Iz Trudnyi patsient 2010 tsink i zhelezo.
31. Sheibak V.M. Sintez i sekretsiya insulina: rol' kationov tsinka// Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2015 № 1 S. 5–8.
32. Zinc and SARS CoV 2: A molecular modeling study of Zn interactions with RNA dependent RNA polymerase and 3C like proteinase enzymes. Ali Pormohammad, Nadia K. Monych, and Raymond J. Turner Int J Mol Med. 2021 Jan; 47(1): 326–334.
33. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr. 2019;10:696–710. doi: 10.1093/advances/nmz013. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
34. Korant BD, Butterworth BE. Inhibition by zinc of rhinovirus protein cleavage: Interaction of zinc with capsid polypeptides. J Virol. 1976; 18:298–306. doi: 10.1128/JVI.18.1.298-306.1976. [PMC free article][PubMed] [CrossRef] [Google Scholar].
35. Kaushik N, Subramani C, Anang S, Muthumohan R, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol. 2017; 91:e00754–e00717. doi: 10.1128/JVI.00754-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
36. Korant BD, Kauer JC, Butterworth BE. Zinc ions inhibit replication of rhinoviruses. Nature. 1974; 248:588–590. doi: 10.1038/248588a0. [PubMed] [CrossRef] [Google Scholar].
37. te Velthuis AJ, van den Worml SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6:e1001176. doi: 10.1371/journal.ppat.1001176.[PMC free article] [PubMed] [CrossRef] [Google Scholar].
38. Hsu JTA, Kuo CJ, Hsieh HP, Wang YC, Huang KK, Lin CPC, Huang PF, Chen X, Liang PH. Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett. 2004;574:116–120. doi: 10.1016/j.febslet.2004.08.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
39. Lee CC, Kuo CJ, Hsu MF, Liang PH, Fang JM, Shie JJ, Wang AH. Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors. FEBS Lett. 2007;581:5454–5458. doi: 10.1016/j.febslet.2007.10.048. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
40. Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJ, Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol. 2009;83:58–64. doi: 10.1128/JVI.01543-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
41. Lanke K, Krenn BM, Melchers WJ, Seipelt J, van Kuppeveld FJ. PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells. J Gen Virol. 2007;88:1206–1217. doi: 10.1099/vir.0.82634-0. [PubMed] [CrossRef] [Google Scholar].
42. Geist FC, Bateman JA, Hayden FG. In vitro activity of zinc salts against human rhinoviruses. Antimicrob Agents Chemother. 1987; 31:622–624. doi: 10.1128/AAC.31.4.622. [PMC free article][PubMed] [CrossRef] [Google Scholar].
43. Hung M, Gibbs CS, Tsiang M. Biochemical characterization of rhinovirus RNA-dependent RNA polymerase. Antiviral Res. 2002;56:99–114. doi: 10.1016/S0166-3542(02)00101-8. [PubMed] [CrossRef] [Google Scholar].
44. Krenn BM, Holzer B, Gaudernak E, Triendl A, van Kuppeveld FJ, Seipelt J. Inhibition of polyprotein processing and RNA replication of human rhinovirus by pyrrolidine dithiocarbamate involves metal ions. J Virol. 2005;79:13892–13899. doi: 10.1128/JVI.79.22.13892-13899.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
45. Suara RO, Crowe JE. Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother. 2004; 48:783–790. doi: 10.1128/AAC.48.3.783-790.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
46. Srivastava V, Rawall S, Vijayan VK, Khanna M. Influenza a virus induced apoptosis: Inhibition of DNA laddering & caspase-3 activity by zinc supplementation in cultured HeLa cells. Indian J Med Res. 2009;129:579–586. [PubMed] [Google Scholar].
47. Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M, et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J Biomed Sci. 2019;26:70. doi: 10.1186/s12929-019-0563-4.
48. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. (2010) 6:e1001176. doi: 10.1371/journal.ppat.1001176.
49. Lian H, Zang R, Wei J, Ye W, Hu MM, Chen YD, et al. The zinc-finger protein ZCCHC3 binds RNA and facilitates viral RNA sensing and activation of the RIG-I-like receptors. Immunity. (2018) 49:438–48.e5. doi: 10.1016/j.immuni.2018.08.014.
50. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. (2006) 124:783–801. doi: 10.1016/j.cell.2006.02.015.
51. Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. (2017) 9:624. doi: 10.3390/nu9060624.
52. Trudnyi patsient 2010 god tsink i zhelezo - 12 Brooks W.A., Santosham M., Naheed A., Goswami D., Wahed M.A., Diener-West M., Faruque A.S., Black R.E. Effect of weekly zinc supplements on incidence of pneumonia and diarrhoea in children younger than 2 years in an urban, low-income population in Bangladesh: randomised controlled trial // Lancet. 2005; 366: 9490: 999-1004.
53. Amit Kumar, Yuichi Kubota, Mikhail Chernov, and Hidetoshi Kasuyac Potential role of zinc supplementation in prophylaxis and treatment of COVID-19 Med Hypotheses. 2020 Nov; 144: 109848. Published online 2020 May 25. doi: 10.1016/j.mehy.2020.109848 PMCID: PMC7247509 PMID: 32512490.
Review
For citations:
Solovyov E.M., Kirillov D.A., Spitsyn B.V., Kiselev M.R., Kvachakidze A.V., Sorokin B.A., Drozhzhina Yu.S. Prospects for the use of new medical technologies based on restructured zinc in the conditions of climate change and ecology. Alternative Energy and Ecology (ISJAEE). 2021;(25-27):160-174. (In Russ.) https://doi.org/10.15518/isjaee.2021.09.160-174