Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Possibilities of application of thermoelectric generators for increasing the energy efficiency cement industry of Uzbekistan

https://doi.org/10.15518/isjaee.2021.09.182-190

Abstract

The volume of waste heat from cement plants in Uzbekistan has been estimated and it has been found that it is more than 6.8 billion kWh per year.

Methods and devices for converting waste heat into electricity at cement plants, their advantages and disadvantages have been studied. It was found that a thermoelectric generator (TEG) is the most suitable for these purposes. It is shown that the existing methods (ORC, TEG with an efficiency of about 20%) from the waste heat of cement plants can produce up to 1.47 billion kWh of electricity per year, satisfying the needs of these plants for electricity, saving fuel and reducing energy pollution of the environment.

The values of the dimensionless thermoelectric figure of merit ZT = 3.6 and 5-6 achieved in new materials show that TEG is already becoming not only competitive against traditional electromechanical devices, but can also surpass them in durability, reducing the volume of maintenance and repair, cheaply and effectively converting waste heat, saving fuel and contributing to a better environment.

The composition of minerals in Uzbekistan has been studied as raw materials for cheap, safe and sufficiently effective thermoelectric materials. It has been established that there are a number of mineral deposits that are promising for these purposes, but their thermoelectric properties have not been studied.

About the Authors

G. Abdurakhmanov
National University of Uzbekistan named after Mirzo Ulugbek
Uzbekistan

Gulmurza Abdurakhmanov, DSc in physics and mathematics, professor

ph.: +998935565714

University St., Tashkent 100174 Uzbekistan



A. S. Esbergenova
National University of Uzbekistan named after Mirzo Ulugbek
Uzbekistan

Amugul S. Esbergenova, Senior re-search scientist

ph.: +998909542618

University St., Tashkent 100174 Uzbekistan



References

1. Strategiya deistvii po pyati prioritetnym napravleniyam razvitiya Respubliki Uzbekistan v 2017—2021 godakh. Prilozhenie № 1 k Ukazu Prezi-denta Respubliki Uzbekistan ot 07.02.2017 g. №UP-4947 // Vse zakonodatel'stvo Uzbekistana [Ehlek-tronnyi resurs]. Rezhim dostupa. - https://nrm.uz/contentf?doc=491559.

2. Strategiya po perekhodu Respubliki Uzbekistan na "zelenuyu" ehkonomiku na period 2019-2030 godov. Prilozhenie N 1 k Postanovleniyu Prezidenta RUz ot 04.10.2019 g. №PP-4477 // Vse zakonodatel'stvo Uzbekistana. [Ehlektronnyi resurs]. Rezhim dostupa. - https://nrm.uz/contentf?doc=602063.

3. Agentstvo po privlecheniyu inostrannykh investitsii pri Ministerstve investitsii i vneshnei torgovli Respubliki Uzbekistan [Ehlektronnyi resurs]. Rezhim dostupa: https://invest.gov.uz/ru/investor/stroitelstvo/.

4. Besedin P. V. Ehnergotekhnologicheskii analiz protsessov v tekhnologii tsementnogo klinkera / P. V. Besedin, P. A. Trubaev; Pod obshch. red. P. V. Besedina. Belgorod: Izd-vo BeLGTASM: BIEHI, 2005. - 456 s.

5. International Finance Corporation. Institute for Industrial Productivity, Waste Heat Recovery for the Cement Sector: Market and Supplier Analysis. World Bank Group, 2014. pp. - 81.

6. Manual on Waste Heat Recovery in Indian Cement Industry As As part of World Class Energy Efficiency in Cement Industry part of World Class Energy Efficiency in Cement, Confederation of Indian Industry, CII Sohrabji Godrej Green Business Centre, 2009. pp. - 62.

7. Waste Heat Recovery in Turkish Cement Industry: Review of Existing Installations and Assess-ment of Remaining Potential, International Finance Corporation, 2018. pp. - 59.

8. Aboelwafa O., Ahmed T.S., Soliman A.F., Ismail I.M., Power Generation Using Waste Heat Recovery by Organic Rankine Cycle and Steam Rankine Cycle in Cement Industry, in: 1st Int. Conf. New Trends Sustain. Energy, Alexandria - Egypt, 2016. https://www.researchgate.net/publication/308953250.

9. Kompaniya «Malaya i Al'ternativnaya ehnergetika» (Turboden) [Ehlektronnyi resurs]. – Rezhim dostupa: http://maenerg.ru/turboden.html.

10. Turboden clean energy ahead [Ehlektronnyi resurs]. Rezhim dostupa: - https://www.turboden.com/products/2463/orc-system.

11. Junior E.P.B., Arrieta M.D.P., Arrieta F.R.P., C.H.F. Silva, Assessment of a Kalina cycle for waste heat recovery in the cement industry, Applied Thermal Engineering. 147(2019), pp. 421-437.

12. Mirolli M.D. The Kalina cycle for cement kiln waste heat recovery power plants. Cement Industry Technical Conference. Conference record, IEEE, 2005, May 15-20. pp. 330- 336.

13. Goldsmid H. J. Introduction to Thermoelectricity/ Goldsmid H. J. - Springer, Heidelberg, London, New York, 2010. - 242.

14. Abdurakhmanov G., Zakhidov R.A., Vakhidova G.S., Mamatkulova S.A. On the criteria of efficiency of power supply to individual households using thermo- and photovoltaic converters. Applied Solar Energy 46, 2010. - No.3, pp. 165-168.

15. Yee S. K., LeBlanc S., Goodson K. E. and Dames C. $ per W metrics for thermoelectric power generation: beyond ZT. Energy and Environmental Science. 6, 2013. – pp. 2561-2571.

16. Caillat T., Borshchevsky A., Fleurial J. -P.. Development of High Effciency Thermoelectric Generators Using Advanced Materials. Proceedings of the 15th

17. Symposium on Space Nuclear Power and Propulsion, Mohamed S. El-Genk editor, AIP proceedings No. 420, Albuquerque, New Mexico, USA, 1998. - pp. 1647-1651.

18. Rowe D. M., “General Principles and Basic Considerations,” in Thermoelectrics Handbook: Macro to Nano, edited by D. M. Rowe. CRC Press, Boca Raton. 2005. - pp. 1–14.

19. Ghodke S.et al. Distinctive Thermoelectric Properties of Supersaturated Si-Ge-P Compounds: Achieving Figure of Merit ZT> 3.6 [Ehlektronnyi re-surs]. Rezhim dostupa. - https://arxiv.org/ftp/arxiv/papers/1909/1909.12476.pdf.

20. Hinterleitner, B., Knapp, I., Poneder, M., Shi, Y., Müller, H., Eguchi, G., Eisenmenger-Sittner, C., Stöger-Pollach, M., Kakefuda, Y., Kawamoto, N., Guo, Q., Baba, T., Mori, T., Ullah, S., Chen, X.-Q., Bauer, E.: Thermoelectric performance of a metastable thin-film Heusler alloy. Nature 576, 2019. - pp. 85–90.

21. Narducci Dario. Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials. Applied Physics Letters, 99(10):10–13, 2011. ISSN 00036951. doi: 10.1063/1.3634018.

22. Iordanishvili E. K. Vvedenie v termoehlektrichestvo. Termoehlektricheskie ehffekty. V: Termoehlektricheskoe okhlazhdenie. Pod red. Bulata L. P. S.-Pb., SPBGUNIPT, 2002. – C. 9-38.

23. Bednorz J. G., Müller K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter 64 (2), 1986. - pp. 189–193.

24. Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Physical Review B 56, 1997. - R12685–R12687.

25. Koshibae, W., Tsutsui, K. & Maekawa, S. Thermopower in cobalt oxides. Physical Review B 62, 2000. - pp. 6869–6872.

26. G.A. Slack, “New Materials and Performance Limits for Thermoelectric Cooling” in CRC Handbook of Thermoelectrics. edited by D.M. Rowe, CRC Press, Boca Raton, 1995. - pp. 407–440.

27. Nonews [Ehlektronnyi resurs]. Rezhim dostupa. - https://nonews.co/directory/lists/countries/electric-powerconsumption.


Review

For citations:


Abdurakhmanov G., Esbergenova A.S. Possibilities of application of thermoelectric generators for increasing the energy efficiency cement industry of Uzbekistan. Alternative Energy and Ecology (ISJAEE). 2021;(25-27):182-190. (In Russ.) https://doi.org/10.15518/isjaee.2021.09.182-190

Views: 361


ISSN 1608-8298 (Print)