Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of the electrode systems parameters on the electricity generation and the possibility of hydrogen production in a plant-microbial fuel cell

https://doi.org/10.15518/isjaee.2022.01.032-051

Abstract

The work is devoted to the creation of plant-microbial fuel cells (PMFC). A design of a cell for PMFC has been developed, which makes it possible to study the effect of the configuration and material of electrode systems on the values of bioelectric potentials (BEP) generated in the system root environment-plant. The possibility of using the developed technology for measuring BEP to create long-term plant-microbial fuel cells based on the use of plants electrical activity as an electromotive force is shown. The electrodes are made of various carbon materials and stain- less steel. The created experimental PMFCs are capable of generating voltages at the level of 230 mV in soil systems and 150 mV in hydroponic ones. The output power was about 50 mW/m2 at a load of 10 kΩ, which did not cause sig- nificant deviations in the condition of the plants. The calculated possible yield of hydrogen per m3 of the root envi- ronment was 0.4 mmol during the day. Thus, PMFC can become a promising source of green energy that can be combined with significant production processes for obtaining plant products or hydrogen.

About the Authors

T. E. Kuleshovа
Agrophysical Research Institute; Ioffe Institute
Russian Federation

Kuleshova Tatiana Eduardovna candidate of physical and mathematical sciences, Researcher Ioffe Institute, Researcher Agrophysical Research Institute

195220, St. Petersburg, Grazhdansky prospekt, 14; 
194021, St. Petersburg, Politekhnicheskaya, 26

 



A. G. Ivanova
Institute of Silicate Chemistry
Russian Federation

Ivanova Alexandra Gennadevna – PhD in Chemistry, Acting head of Laboratories of Inorganic Synthesis, Leading Researcher.

199034, St. Petersburg, Makarova, 2



A. S. Galushko
Agrophysical Research Institute
Russian Federation

Galushko Alexander Sergeevich – candidate of biological sciences, leading researcher

195220, St. Petersburg, Grazhdansky prospekt, 14



I. Yu. Kruchinina
Institute of Silicate Chemistry
Russian Federation

Kruchinina Irina Yurievna – Doctor of Technical Sciences, Director of the Institute 

199034, St. Petersburg, Makarova, 2



O. A. Shilova
Institute of Silicate Chemistry
Russian Federation

Shilova Olga Alekseevna – Doctor of Chemical Sciences, Chief Researcher, World Academy of Ceramics, professor

199034, St. Petersburg, Makarova, 2



O. R. Udalova
Agrophysical Research Institute
Russian Federation

Udalova Olga Rudolfovna – candidate of agricultural sciences, Leading Researcher, head of sector

195220, St. Petersburg, Grazhdansky prospekt, 14



A. S. Zhestkov
Agrophysical Research Institute
Russian Federation

Zhestkov Alexey Sergeevich – Lead Engineer 

195220, St. Petersburg, Grazhdansky prospekt, 14



G. G. Panova
Agrophysical Research Institute
Russian Federation

Panova Gayane Gennadievna – candidate of biological sciences, Leading Researcher, head of Department

195220, St. Petersburg, Grazhdansky prospekt, 14



N. R. Gall
in Ioffe Institute
Russian Federation

Gall Nikolay Rostislavovich – Doctor of Physical and Mathematical Sciences, head of laboratory 

194021, St. Petersburg, Politekhnicheskaya, 26



References

1. Strik D. P. et al. Green electricity production with living plants and bacteria in a fuel cell //International Journal of Energy Research. – 2008. – T. 32. – №. 9. – S. 870-876.

2. Svistova I. D., Kuvshinova N. M., Nazarenko N. N. Mikrobno-rastitel'nye assotsiatsii netraditsionnykh sakharonosov i produtsentov natural'nykh podslastitelei //Teoretcheskaya i prikladnaya ehkologiya. – 2016. –№. 3. – S. 41-47.

3. Deng H., Chen Z., Zhao F. Energy from plants and microorganisms: progress in plant–microbial fuel cells //ChemSusChem. – 2012. – T. 5. – №. 6. – S. 1006- 1011.

4. Logan B. E. Microbial fuel cells. – John Wiley & Sons, 2008.

5. Bennetto H. P. et al. Electricity generation by microorganisms //Biotechnology education. – 1990. – T. 1. – №. 4. – S. 163-168.

6. Mel'nikov P. S. Spravochnik po gal'vanopokrytiyam v mashinostroenii. — M.: Mashinostroenie, 1979.—296 s.

7. Nowotny J., Veziroglu T.N. Impact of hydrogen on the environment //Alternative Energy and Ecology (ISJAEE). –2019. – Т. 01-03. – С. 16-24. (In Russ.)

8. Das D., Veziroglu T.N. Advances in biological hydrogen production processes //Alternative Energy and Ecology (ISJAEE). 2017. – Т. 22-24. – С. 83-98. (In Russ.)

9. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria //Bacteriological reviews. – 1977. – T. 41. – №. 1. – S. 100-180.

10. Sharma Y, Li B. Optimizing hydrogen production from organic wastewater treatment in batch reactors through experimental and kinetic analysis //Int J Hydrogen Energy. – 2009. – V. 34(15). – P. 6171–80.

11. Logan BE, Oh SE, Kim IS, Van Ginkel S. Bio- logical hydrogen production measured in batch anaerobic respirometers //Environ Sci Technol. – 2002. – V. 36(11). – P. 2530–5.

12. Wang A., Sun D., Cao G., Wang H., Ren N., Wu W. M., Logan B. E. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell //Bioresource Technology. – 2011. – T. 102. – №. 5. – S. 4137-4143.

13. Oh S. E., Logan B. E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies //Water research. – 2005. – V. 39. – №. 19. – P. 4673-4682.

14. Sharma Y., Li B. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC) //International Journal of Hydrogen Energy. – 2010. – T. 35. – №. 8. – S. 3789-3797.

15. Chu C. Y., Tung L., Lin C. Y. Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture //International journal of hydrogen energy. – 2013. – T. 38. – №. 35. – S. 15849-15855.

16. Wan, L. L., Li, X. J., Zang, G. L., Wang, X., Zhang, Y. Y., & Zhou, Q. X. A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell //RSC advances. – 2015. – T. 5. – №. 100. – S. 82276-82281.

17. Apollon W., Rusyn I., González-Gamboa N., Kuleshova T., Luna-Maldonado A.I., Vidales-Contreras J.A., Kamaraj S.K. Improvement of zero waste sustaina- ble recovery using microbial energy generation systems: A comprehensive review //Science of The Total Envi- ronment. – 2022. – S. 153055.

18. Nitisoravut R., Regmi R. Plant microbial fuel cells: A promising biosystems engineering //Renewable and Sustainable Energy Reviews. – 2017. – T. 76. – S. 81-89.

19. Higinbotham N. Movement of ions and electrogenesis in higher plant cells //American zoologist. – 1970. – T. 10. – №. 3. – S. 393-403.

20. Opritov V. A., Tyatygin S. S., Retivin V. G. Bioehlektrogenez u vysshikh rastenii. – 1991.

21. Wetser K. et al. Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes //Applied energy. – 2017. – T. 185. – S. 642-649.

22. Wetser K. et al. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode //Applied energy. – 2015. – T. 137. – S. 151- 157.

23. Strik D. P. et al. Microbial solar cells: applying photosynthetic and electrochemically active organisms //Trends in biotechnology. – 2011. – T. 29. – №. 1. – S. 41-49.

24. Lu L., Xing D., Ren Z. J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell //Bioresource technology. – 2015. – T. 195. – S. 115- 121.

25. Kaku N. et al. Plant/microbe cooperation for electricity generation in a rice paddy field //Applied microbiology and biotechnology. – 2008. – T. 79. – №. 1. – S. 43-49.

26. Khare A. P., Bundela H. Generation of electricity using vermicompost with different substrates through single chamber MFC approach //Int J Eng Trends Tech- nol. – 2013. – T. 4. – №. 9. – S. 4206-4210.

27. Liu S. et al. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system //International Journal of Photoenergy. – 2013. – T. 2013

28. Moqsud M. A. et al. Compost in plant microbial fuel cell for bioelectricity generation //Waste Management. – 2015. – T. 36. – S. 63-69.

29. Sheremet V. V., Volchenko N. N., Samkov A. A. Vliyanie sostava pitatel'noi sredy i rastitel'nogo komponenta na ehlektrogenez v rastitel'no-mikrobnom top- livnom ehlemente //Biotekhnologiya i obshchestvo v XXI veke. – 2015. – S. 429-431.

30. Panova G. G. et al. Fundamentals of Physical Modeling of “Ideal” Agroecosystems //Technical Phys- ics. – 2020. – T. 65. – №. 10. – S. 1563-1569.

31. Chesnokov V.A., Bazyrina E.N., Bushueva T.M. Vyrashchivanie rastenii bez pochvy, Izd. LGU, – 1960.

32. Rahimnejad M. et al. Microbial fuel cell as new technology for bioelectricity generation: A review //Alexandria Engineering Journal. – 2015. – T. 54. – №.3. – S. 745-756.

33. Tou I., Azri Y.M., Sadi M., Lounici H., Kebbouche-Gana S. Chlorophytum microbial fuel cell characterization //International Journal of Green Energy. – 2019. – T. 16. – №. 12. – S. 947-959.

34. Kuleshova T. E., Bushlyakova A. V., Gall N. R. Noninvasive measurement of bioelectric potentials of plants //Technical Physics Letters. – 2019. – T. 45. – №.3. – S. 190-192.

35. Kuleshova T. E., Gall N. R. Dynamics of Bioelectric Potential in the Root Zone of Plants during Irrigation //Eurasian Soil Science. – 2021. – T. 54. – №. 3. – S. 381-388.

36. Medvedev S. S. Fiziologiya rastenii. – BKHV- Peterburg, 2013.

37. Kuleshova T. E. et al. The influence of the spectral properties of the lighting environment on light absorption by lettuce leaves and the net productivity of lettuce //Biophysics. – 2020. – T. 65. – №. 1. – S. 95- 105.

38. Kabutey F.T., Zhao Q., Wei L., Ding J., Antwi P., Quashie F.K., Wang W., An overview of plant microbial fuel cells (PMFCs): Configurations and applica- tions. //Renew. Sustain. Energy Rev. – 2019. – V. 110. – P. 402–414.

39. Apollon W., Kamaraj S.K., Silos-Espino H., Perales-Segovia C., Valera-Montero L.L., Maldonado- Ruelas V.A., Gómez-Leyva J.F. Impact of Opuntia spe- cies plant biobattery in a semi-arid environment: Demonstration of their applications //Appl Energy. – 2020. – V. 279: – P. 115788.


Review

For citations:


Kuleshovа T.E., Ivanova A.G., Galushko A.S., Kruchinina I.Yu., Shilova O.A., Udalova O.R., Zhestkov A.S., Panova G.G., Gall N.R. Influence of the electrode systems parameters on the electricity generation and the possibility of hydrogen production in a plant-microbial fuel cell. Alternative Energy and Ecology (ISJAEE). 2022;(1):32-51. (In Russ.) https://doi.org/10.15518/isjaee.2022.01.032-051

Views: 867


ISSN 1608-8298 (Print)