

Experimental results of the study of underburned hydrogen during burning in oxygen medium
https://doi.org/10.15518/isjaee.2022.01.052-068
Abstract
The area of research is the experimental study of the composition of steam as a result of the combustion of hydrogen in an oxygen atmosphere in order to assess the underburning of hydrogen. The existing experience of experimental research on the combustion of hydrogen in an oxygen atmosphere is analyzed. Among the known works, the underburning of hydrogen was determined after mixing the dissociated vapor with a cooling component, which contributes to its sharp decrease in temperature. As a result, this leads to a decrease in the number of recombinations of unreacted hydrogen towards the formation of steam, which leads to an increased content of hydrogen in the steam. A large number of works are devoted to the combustion of various types of fuel with hydrogen additives in internal combustion engines in a number of European and Asian countries. The purpose of the article is to supplement and summarize a series of experiments on the study of hydrogen underburning when burning in an oxygen atmosphere without using a cooling component for mixing with combustion products (water vapor). Only external cooling of the flame tube of the experimental setup was used. This experiment was performed for the first time. For the conditions of experiments carried out by the authors of the article, a diagram, components and measuring instruments of the experimental setup are presented. The initial data on the pressure and temperature of hydrogen, oxygen, cooling water are given. The main expressions of the procedure for determining the underburning of hydrogen are given. The main results of experimental measurements are presented. The graphical results of measuring the steam temperature along the length of the flame tube of the experimental setup, the flow rates of hydrogen and oxygen, the temperature and flow rate of cooling water, the pressure inside the flame tube and in the steam extraction pipeline for chemical analysis are shown. On the basis of generalization of a series of experiments, an exponential character of the decrease in the underburning of hydrogen along the length of the flame tube of the experimental setup was obtained, which indicates the intense processes of hydrogen recombination towards the formation of steam. It was found that during the time of 0.069 s with the movement of dissociated steam inside a flame tube 980 mm long, the underburning of hydrogen decreases from 5.85 to 0.016% of the mass during stoichiometric combustion and to 0.0138% of the mass with an excess of the oxidant equal to 1.4.
About the Authors
R. Z. AminovRussian Federation
Aminov Rashid Zarifovich – doctor of technical science, professor. Head of department of energy problems
410054, Saratov, st. Polytechnic, 77 offices 13
A. I. Schastlivtsev
Russian Federation
Schastlivtcev Aleksey Ivanovich – candidate of technical science, Senior Researcher
bldg. 2, bld. 13, st. Izhora, Moscow, 125412
A. N. Bayramov
Russian Federation
Bairamov Artem Nicolaevich – candidate of technical science, Senior Researcher, Department of Energy Problems
410054, Saratov, st. Polytechnic, 77 offices 13
References
1. Ehnergeticheskaya strategiya Rossii na period do 2035g. Pravitel'stvo Rossiiskoi federatsii. – M., 2020g.79 s.
2. Golovin R. A. Strategiya deyatel'nosti Goskorporatsii «RosatoM».M., 2018g.
3. Aminov R.Z. Kombinirovanie vodorodnykh ehnergeticheskikh tsiklov s atomnymi ehlektrostantsiyami / R. Z. Aminov, A. N. Bairamov. M.: Nauka, 2016.254s.
4. Pat. 2459293 Rossiiskaya Federatsiya, MPK G 21D1/00. Turbinnaya ustanovka atomnoi ehlektrostantsii (varianty) / Aminov R.Z, Bairamov A.N., Egorov A.N.; zayaviteli i patentoobladateli Aminov R.Z, Bairamov A.N., Egorov A.N. – № 2011123255/07 ; zayavl. 08.06.2011; opubl. 20.08.2012, Byul. № 23. – 9 s. : il.
5. Pat. № 2736603 Rossiiskaya Federatsiya. Siste-ma bezopasnogo ispol'zovaniya vodoroda pri povy-shenii moshchnosti dvukhkonturnoi AEHS vyshe nominal'noi / Bairamov A. N., Aminov R. Z; zayaviteli i patentoobladateli Bairamov A. N., Aminov R. Z. №2020106866; zayavl. 15.08.2019; opubl. 19.11.2020g. Byul. №32
6. Aminov R.Z. Otsenka sistemnoi ehffektivnosti AEHS v kombinirovanii s vodorodnym ehnergeticheskim kompleksom / R. Z. Aminov, A. N. Bairamov // Izvestiya RAN. Ehnergetika. – 2019. №1. S.70-81.
7. Aminov R. Z. Assessment of the Performance of a Nuclear–Hydrogen Power Generation System / R. Z. Aminov, A. N. Bairamov, M. V. Garievskii // Thermal Engineering. 2019. №3. Vol.66. Pages.196-209.
8. Aminov R. Z. Otsenka ehffektivnosti kombinirovaniya AEHS s vodorodnym kompleksom v usloviyakh bezopasnogo ispol'zovaniya vodoroda v paroturbinnom tsikle / R. Z. Aminov, A. N. Bairamov // Izvestiya vuzov. Problemy ehnergetiki.2021.№1.S.56-69.
9. Aminov R.Z., Bairamov A.N., Shatskova O. V. Assessment of the Efficiency of Hydrogen Cycles on the Basis of Off-Peak Electric Energy Produced at a Nuclear Power Station / R. Z. Aminov, A. N. Bairamov, O. V. Shatskova// Thermal Engineering.– 2009.– T.56.-№11– Pages. 940 – 945.
10. Aminov R.Z. Sistemnaya ehffektivnost' vodorodnykh tsiklov na osnove vnepikovoi ehlektroehner-gii AEHS / R. Z. Aminov, A. N. Bairamov // Izvestiya RAN. Ehnergetika. – 2011.– № 4.– S. 52-61.
11. Schastlivtsev A.I. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production / A. I. Schastlivtsev, V. I. Borzenko // Journal of Physics: Conference Series.2017.T. 891.№ 1.012213.
12. Schastlivtsev A. I. Experimental study of the processes in hydrogen-oxygen gas generator /A. I. Schastlivtsev, D. Dunikov, V. I. Borzenko // International Journal of Hydrogen Energy.2019. -T. 44.№ 18. — Pages. 9450-9455.
13. Aminov R.Z. Obosnovanie tipa dopolnitel'-noi turbinnoi ustanovki pri kombinirovanii AEHS s vodorodnym ehnergeticheskim kompleksom / R. Z. Aminov, A. N. Bairamov // Trudy Akademehnergo.2015.-№3.-S.63-76.
14. Pat. №2427048 Rossiiskaya Federatsiya, MPK7 F 22B 1/26, G 21D5/16, F 01K3/18. Sistema szhiganiya vodoroda dlya paro-vodorodnogo peregreva svezhego para v tsikle atomnoi ehlektricheskoi stantsii / Ami-nov R.Z., Bairamov A.N.; zayaviteli i patentooblada-teli Aminov R.Z, Bairamov A.N. – № 2009117039/06; zayavl. 04.05.2009; opubl. 20.08.2011, Byul. № 23. – 8 s. : il.
15. Pat. №2709237. Rossiiskaya Federatsiya, MPK F 22B 1/26, G 21D5/16. Sistema szhiganiya vodoroda dlya paro-vodorodnogo peregreva svezhego para v tsik-le atomnoi ehlektricheskoi stantsii s zakruchennym techeniem komponentov i s ispol'zovaniem ul'travysokotemperaturnykh keramicheskikh materialov / Bairamov A. N.; zayavitel' i patentoobladatel' Bairamov A. N. – №2018134273; zayavl. 27.09.2018; opubl.17.12.2019. Byul. №35.-15s.: il.
16. Pat. №2488903 RF, MPK G21D5/16. Sistema szhiganiya vodoroda v tsikle AEHS s regulirovaniem temperatury vodorod-kislorodnogo para / Aminov R.Z., Bairamov A.N., Yurin V.E.; zayaviteli i patentoobladateli Aminov R.Z., Bairamov A.N., Yurin V.E. – № 2012118303/07; zayavl. 03.05.12; opubl. 27.07.13, Byul. № 21. – 17 s. : il.
17. Stathopoulos P., Sleem T., Oliver Paschereit C. Steam generation with stoichiometric combustion of H2/O2 as a way to simultaneously provide primary control reserve and energy storage / Stathopoulos P., Sleem T., Oliver Paschereit C. // Applied energy.-2017/T. 205 Pages.692-702.
18. Peschka W. Hydrogen combustion in tomorrow’s energy technology / W. Peschka // International Journal of Hydrogen Energy.1987. -V. 12.№ 10.Pages. 481– 499.
19. Demonstration plant for the hydrogen/oxygen spinning reserve / H. J. Sternfeld, P. A. Heinrich // International Journal of Hydrogen Energy.1989.V. 14, Iss. 10. Pages.703–716.
20. Fröhlke K. Spinning reserve system based on H2/O2 combustion / K. Fröhlke, O. J. Haidn // Energy Convers. Mgmt.1997.V. 38, № 10–13.Pages. 983– 993.
21. Haidn O. J., Fröhlke K., Carl J., Weingartner S. Improved combustion efficiency of a H2/O2 steam generator for spinning reserve application / O. J. Haidn, K. Fröhlke, J. Carl, S. Weingartner // International Journal of Hydrogen Energy.1998.V. 23.Iss. 6. Pages. 491–497.
22. Razrabotka i issledovanie ehksperimental'-nogo vodorod-kislorodnogo parogeneratora moshchno-st'yu 10MVt(t) / I. N. Bebelin [i dr.] // Teploehner-getika. 1997. №8. S.48-52.
23. Malyshenko S.P., Prigozhin V.I., Savich A.R., Schastlivtsev A.I., Il'ichev V.A., Nazarova O.V. Ehffektivnost' generatsii para v vodorodno-kislorodnykh parogeneratorakh megavattnogo klassa moshchnosti // Teplofizika vysokikh temperatur. 2012. T. 50. № 6. S. 820–829.
24. Pribaturin N. A. Ehksperimental'noe issledovanie protsessa goreniya smesei vodorod-kislorod i metan-kislorod v srede slaboperegretogo vodyanogo para / N. A. Pribaturin [i dr.] // Teplo-ehnergetika.2016.№5.S.31-36.
25. Borzenko V. I. Ehffektivnost' generatsii para v vodorodno-kislorodnom parogeneratore kilo-vattnogo klassa moshchnosti / V. I. Borzenko, A. I. Schastlivtsev // Teplofizika vysokikh temperatur. 2018. T.56.Vyp.6.S.946-952.
26. Tanneberger T. Combustion efficiency measurements and burner characterization in a hydrogen-oxyfuel combustor / T. Tanneberger [and other]// Inter-national Journal of Hydrogen Energy. Volume 44. Issue 56. 2019. Pages 29752-29764.
27. Haller J. Thermodynamic concept for an efficient zero-emission combustion of hydrogen and oxygen in stationary internal combustion engines with high power density / J Haller, T. Link // International Journal of Hydrogen Energy. Volume 42. Issue 44. 2017. Pages 27374-27387.
28. Kuznetsov M. Experiments on combustion regimes for hydrogen/air mixtures in a thin layer geometry / M. Kuznetsov, J. Grune // International Journal of Hydrogen Energy.-2019. Volume 44. Issue 17. Pages. 8727-8742.
29. Lu Q. Hetero-homogeneous combustion of premixed hydrogen–oxygen mixture in a micro-reactor with catalyst segmentation / Q. Lu [and other] // International Journal of Hydrogen Energy.-2016.Volume 41.Issue 28.Pages. 12387-12396.
30. Huang F. Effects of hydrogen addition on combustion characteristics of a free-piston linear engine with glow-assisted ignition / F. Huang, W. Kong // International Journal of Hydrogen Energy.-2021.Volume 46.Issue 44.Pages 23040-23052.
31. Tang G. Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia / G. Tang [and other] // International Journal of Hydrogen Energy.-2021.Volume 46.Issue 39.Pages 20765-20776.
32. Wang Y. Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine / Y. Wang, X. Zhou, L. Liu // International Journal of Hydrogen Energy.-2021.Volume 46.Issue 27.Pages 14805-14812.
33. Zhu H. Effect of excess hydrogen on hydrogen fueled internal combustion engine under full load / H. Zhu [and other] // International Journal of Hydrogen Energy.-2020.Volume 45.Issue 39.Pages 2041920425.
34. Yu X. Effects of hydrogen direct injection on combustion and emission characteristics of a hydrogen/Acetone-Butanol-Ethanol dual-fuel spark ignition engine under lean-burn conditions / X. Yu [and other] //International Journal of Hydrogen Energy.-2020.Volume 45.Issue 58.Pages 34193-34203.
35. Wang D. Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions / D. Wang // International Journal of Hydrogen Energy.-2021.Volume 46.Issue 2.Pages 2667-2683.
36. Shanga W. Effect of exhaust gas recirculation and hydrogen direct injection on combustion and emission characteristics of a n-butanol SI engine / W. Shanga [and other] // International Journal of Hydrogen Energy.2020.Volume 45.Issue 35.Pages 17961-17974.
37. Wang J. Numerical investigation of water injection quantity and water injection timing on the thermodynamics, combustion and emissions in a hydrogen enriched lean-burn natural gas SI engine / J. Wang [and other] // International Journal of Hydrogen Energy.2020.Volume 45.Issue 35. Pages 17935-17952.
38. Yu X. A comparative study on effects of homogeneous or stratified hydrogen on combustion and emissions of a gasoline/hydrogen SI engine / X. Yu // International Journal of Hydrogen Energy.-2019.Volume 44.Issue 47.Pages 25974-25984.
39. Shi B. Rapidly mixed combustion of hydrogen/oxygen diluted by N2 and CO2 in a tubular flame combustor / B. Shi [and other] // International Journal of Hydrogen Energy.-2018.Volume 43.Issue 31.Pages 14806-14815.
40. Metrow C., Gray S., Ciccarelli G. Detonation propagation through a nonuniform layer of hydrogenoxygen in a narrow channel / C. Metrow, S. Gray, G. Ciccarelli // International Journal of Hydrogen Energy.2021.Volume 46.Issue 41.Pages 21726-21738.
41. Yapicioglu A., Dincer I. Performance assesment of hydrogen and ammonia combustion with various fuels for power generators / A. Yapicioglu, I. Dincer // International Journal of Hydrogen Energ.2018.Vol-ume 43.Issue 45.Pages 21037-21048.
42. Zhang F. Characterising premixed ammonia and hydrogen combustion for a novel Linear Joule Engine Generator / F. Zhang [and other] // International Journal of Hydrogen Energy.2021.-Volume 46.Issue 44.Pages 23075-23090.
43. Ramsay C. J. A numerical study on the effects of constant volume combustion phase on performance and emissions characteristics of a diesel-hydrogen dual-fuel engine / C. J. Ramsay [and other] // International Journal of Hydrogen Energy.-2020.Volume 45.Issue 56.Pages 32598-32618.
44. Mashruk S., Xiao H., Valera-Medina A. RichQuench-Lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems / S. Mashruk, H. Xiao, A. Valera-Medina // International Journal of Hydrogen Energy.-2021.Volume 46.Issue 5.Pages 4472-4484.
45. Valera-Medina A. Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation / A. Valera-Medina [and other] // International Journal of Hydrogen Energy.-2019.Volume 44.Issue 16.Pages 8615-8626.
46. Zhao Y., McDonell V., Samuelsen S. Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated biogas or hydrogen / Y. Zhao, V. McDonell, S. Samuelsen // International Journal of Hydrogen Energy.-2020 Volume 45.Issue 19.Pages 11368-11379.
47. Zhao Y., McDonell V., Samuelsen S. Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner / Y. Zhao, V. McDonell, S. Samuelsen // International Journal of Hydrogen Energy.2019.-Volume 44.Issue 23.Pages 12239-12253.
48. Zhao Y., McDonell V., Samuelsen S. Experimental assessment of the combustion performance of an oven burner operated on pipeline natural gas mixed with hydrogen / Y. Zhao, V. McDonell, S. Samuelsen // International Journal of Hydrogen Energy.-2019.Volume 44.Issue 47.Pages 26049-26062.
49. Nik Muhammad Hafiz Simulation of the combustion process for a CI hydrogen engine in an ar-gonoxygen atmosphere / Nik Muhammad Hafiz, Mohd Radzi AbuMansor, Wan Mohd Faizal Wan Mahmood // International Journal of Hydrogen Energy.-2018.Volume 43.Issue 24.Pages 11286-11297.
50. Riahi Z. Combustion with mixed enrichment of oxygen and hydrogen in lean regime / Z. Riahi [and other] // International Journal of Hydrogen Energy.-2017.Volume 42.Issue 13.Pages 8870-8880.
51. Aminov R. Z. On the issue of investigating the kinetics of processes in dissociated water steam / R. Z. Aminov, A. I. Schastlivtsev, A. N. Bairamov // International Journal of Hydrogen Energy.2017.T. 42.№ 32. C. 20843-20848.
52. Aminov R.Z. Ehksperimental'naya otsenka doli neproreagirovavshego vodoroda pri szhiganii v sre-de kisloroda / R. Z. Aminov, A. I. Schastlivtsev, A. N. Bairamov // Mezhdunarodnyi nauchnyi zhurnal Al'ternativnaya ehnergetika i ehkologiya.2020.№ 7-18 (330-341).S. 68-79.
53. Aminov R. Z. Experimental Evaluation of the Composition of the Steam Generated during Hydrogen Combustion in Oxygen / R. Z. Aminov, A. I. Schastlivtsev, and A. N. Bayramov //High Temperature.2020.Vol. 58.№. 3.Pages. 410–416.
Review
For citations:
Aminov R.Z., Schastlivtsev A.I., Bayramov A.N. Experimental results of the study of underburned hydrogen during burning in oxygen medium. Alternative Energy and Ecology (ISJAEE). 2022;(1):52-68. (In Russ.) https://doi.org/10.15518/isjaee.2022.01.052-068