

Production of methanol from straw and hay of meadow grasses
https://doi.org/10.15518/isjaee.2022.01.093-102
Abstract
Obtaining energy carriers convenient for storage, transportation and use for direct use in the energy sector, or lowenergy-consuming conversion at the point of consumption, into hydrogen fuel is one of the urgent tasks. Nobel Prize winner George Ola and his collaborators have shown that the universal product for large-scale industrial production of hydrogen is methanol, which requires the least energy costs for conversion.
However, the production of methanol from fossil fuels (coal, gas, oil) is accompanied by the emission of greenhouse gas carbon dioxide. This effect can be avoided by using fast-growing plant masses in carbon equilibrium with the biosphere as raw materials for its production (as much carbon dioxide was released during use, the same amount is absorbed during plant growth).
This paper substantiates the possibility of solving this problem with the help of a new technology for obtaining methanol from straw and hay of fast-growing meadow grasses.
A technological complex of installations for the production of methanol from straw and hay of meadow grasses is presented, including: a direct-flow reactor, a heater case with a fluidized bed of dispersed electrocorundum, a wasteheat boiler, an installation for removing excess carbon dioxide from synthesized gas with monoethanolamine and an installation for the production of methanol from synthesis gas and other auxiliary equipment.
The temperature in the reactor is 700 ° C, in the reactor heater is 800 ° C. The output of synthesis gas is 1.529 kg / s, its heat of combustion is 12939 kJ / kg. The share of synthesis gas entering to heat the reactor is 0.332 of the total output, and the production of methanol is 0.668 (1.47 m3 / s).
The power of the steam boiler-utilizer is 2219 kW. The yield of methanol is 0.56 kg / s, its heat of combustion is 20 mJ / kg. For the production of 1 kg of methanol, 1.78 kg of alfalfa is required. Annual consumption of alfalfa 31536 tons, water 16685 tons Annual production of methanol 17660 t. Thermal efficiency (gross) of the process of processing alfalfa into methanol 58%.
About the Authors
S. E. ShchekleinRussian Federation
Sergey E. Shcheklein – Doctor of technical science, professor, head of Atomic Stations and Renewable Energy Sources Department
Ekaterinburg
A. M. Dubinin
Russian Federation
Alexey Mihailovich Dubinin – Doctor of Technical Sciences, Professor at the Department of Nuclear Stations and Renewable Energy Sources
Ekaterinburg
O. V. Baranova
Russian Federation
Olga Baranova – Undergraduate student of the Department of Nuclear Power Plants and Renewable Energy Sources
Ekaterinburg
References
1. N. A. Rustamov, S.I. Zaitsev, N.I. Chernova. Biomassa – istochnik ehnergii – Ehnergiya – 2005 – № 6. – S. 20-28.
2. O. Zaborski. Biomassa kak istochnik ehnergii – Plenum Press, N. Y., 1981.
3. Kartha, S., Leach, G. Using modern bioenergy to reduce rural poverty (Report for the Shell Foundation) – 2001.
4. Sikkema, R., Steiner, M., Junginger, M., Hiegl, W., Hansen M.T., Faaij, A.The European wood pellet markets: current status and prospects for 2020. – 2011 – Biofuels, Bioproducts and Biorefining – V. 5 – № 3: 250–278.
5. . Hwai Ch.O., Wei-Hsin C., Yashvir S., Yong Ya. G., ChiaYang Ch., Pau L. Show. A State-of-the-art Review on Thermochemical Conversion of Biomass for Biofuel Production: A TG-FTIR Approach // Energy Convers. Manage. 2020. V. 209. 112634.
6. Shusheng P. Advances in Thermochemical Conversion of Woody Biomass to Energy, Fuels, and Chemicals // Biotechnol. Adv. 2019. V. 37. Is.4. P. 589.
7. Parovaya gazifikatsiya otrabotannykh avtomobil'nykh shin s tsel'yu polucheniya metanola. Shcheklein S. E., Dubinin A. M., Matveev A. V. Energy and Chem Technologies. 2018. s 175-182.
8. Proizvodstvo metanola na osnove pryamotochnogo gazogeneratora i yadernogo reaktora. Shcheklein S. E., Dubinin A. M. Atomnaya ehnergiya 2018. T. 124. №2. s 76-79.
9. Shcheklein S.E., Matveev, A., Dubinin, A. Steam gasification of waste tires for the purpose of methanol production// 2018. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 18(4.2), s. 175-182.
10. Xun H., Mortaza G. Biomass Pyrolysis: A Review of the Process Development and Challenges from Initial Researches up to the Commercialisation Stage // J. Energy Chem. 2019. V. 39. P. 109.
11. Safarian S., Unnþórsson R., Richter Ch. A Review of Biomass Gasification Modelling // Renewable Sustainable Energy Rev. 2019. V. 110. P. 378.
12. Furness D.T., Judd S.J. Thermochemical Treatment of Sewage Sludge // J. CIWEM. 2000. V. 14. P. 57.
13. Pokorna E., Postelmans N., Jenicek P., Schreurs S., Carleer R., Yperman J. Study of Bio-oils and Solids from Flash Pyrolysis of Sewage Sludges // Fuel. 2009. V. 88. P. 1344.
14. Kosov V., Sinelschikov V., Zaichenko V. HighCalorific Gas Mixtures Produced from Biomass // Springer Proc. Phys. 2014. V. 1. P. 377.
15. Peng L., Qunxing H., Yong C., Fei W., Jianhua Y. Catalytic Cracking of Tar Derived from the Pyrolysis of Municipal Solid Waste Fractions over Biochar // Proc.Combustion Institute. 2019. V. 37. P. 2673.
16. Feiqiang G., Xiaolei L., Yuan L., Kuangye P., Chenglong G., Zhonghao R. Catalytic Cracking of Biomass Pyrolysis Tar over Char-supported Catalysts // Energy Convers. Manage. 2018. V. 167. P. 81.
17. Qing D., Shuping Z., Huaju L., Xiangqian L., Zhaoyu W. Catalytic Cracking of Biomass Tar Together with Syngas Production over Red Brick Powdersupported Nickel Catalysts // Fuel Proc. Technol. 2019. V. 194.106123.
18. Glazov S.V., Kislov V.M., Razmyslov A.V., Salganskaya M.V. Konversiya produktov gazifikatsii organicheskikh topliv v protochnom fil'tratsionnom konvertore s nasadkoi // Zhurn. prikl. khimii. 2019. T. 92. № 7. S. 927.
19. Timofeev B.C., Serafimov JI.A. Printsipy tekhnologii osnovnogo organicheskogo i neftekhimicheskogo sinteza M.:Vysshaya shkola, 2003.536 s.
20. Karavaev M.M., Leonov V.E., Popov I.G., Shepelev E.T. Tekhnologiya sinteticheskogo metanola. M.: Khimiya, 1984. 239 s.
21. Rozovskii A.YA., Lin G.I. Teoreticheskie osnovy sinteza metanola. M.: Khimiya, 1990. 268 s.
22. Eliseev O.L. Tekhnologii “gaz v zhidkost'” // Ros. khim. zhurn. 2008. T. 52. № 6. S. 53.
23. Sheldon R.A. Khimicheskie produkty na osnove sintez-gaza. M.: Khimiya, 1987. 248 s.
24. Kakichev A.P., Krasnyanskaya A.G., Lender A.A. i dr. Sposob polucheniya metanola. Patent RF № 2181117: MPK S07S29/154, S07S31/04. 2002.
25. Lishchiner I.I., Malova O.V., Tarasov A.L., Korobtsev S.V., Krotov M.F., Potapkin B.V. Osobennosti polucheniya DMEH iz sintez-gaza na smesevykh katalizatorakh // Kataliz v promyshlennosti. 2016. T. 16. № 2. S. 23
26. Lishchiner I.I.,Malova O.V., Tarasov A.L. Konversiya PNG v aromaticheskie uglevodorody // Kataliz v promyshlennosti. 2018. № 5. S. 45.
27. Ershov M.A., Zaichenko V.M., Kachalov V.V., Klimov N.A., Lavrenov V.A., Lishchiner I.I., Malova O.V., Tarasov A.L. Cintez bazovogo komponenta aviabenzina iz sintez-gaza, poluchennogo iz biomassy//Ehkologiya i promyshlennost' Rossii. 2016. T.20.№ 12. S. 25.
28. Larina O.M., Zaichenko V.M. Thermal Cracking in Charcoal and Ceramics of Pyrolysis Liquid from Sewage Sludge // J. Phys.: Conf. Series. 2018. V. 94. 012034.
29. V. M. Zaichenko, V. A. Lavrenov, O. M. Larina, I. I. Lishchiner, O. V. Malova, Ehnergeticheskaya utilizatsiya biomassy. Novye tekhnologii, TVT, 2020, tom 58, vypusk 4, 723–731.
30. Osnovy prakticheskoi teorii goreniya: Uchebnoe posobie dlya vuzov / Pomerantsev i dr.; Pod red. V.V. Pomerantseva, 2-e izd., pererab.i dop. – L.: Ehnergoatomizdat. Leningradskoe otdelenie, 1986.
31. Nagrev i okhlazhdenie metallov v kipyashchem sloe. Baskakov A. P. M., «MetallurgiYA», 1974, 272 s.
32. Osnovy prakticheskoi teorii goreniya: Uchebnoe posobie dlya vuzov / Pomerantsev i dr.; Pod red. V.V. Pomerantseva, 2-e izd., pererab.i dop. – L.: Ehnergoatomizdat. Leningradskoe otdelenie, 1986.
33. Karapet'yants M. KH. Khimicheskaya termodina-mika. M.: Khimiya. 1975.
34. Kratkii spravochnik fiziko-khimicheskikh velichin. 12-e izdanie / Pod red. A. A. Ravelya i A. M. Ponomarevoi. M.: OOO «TID» ARIS», 2010.
35. Karapet'yants M. KH., Karapet'yants M. L. Osnovnye termodinamicheskie konstanty neorganicheskikh i organicheskikh veshchestv. M.: Khimiya. 1968.
36. Khimicheskie veshchestva iz uglya/ Pod red. I. V. Kalechitsa. M.: Khimiya.1980.
37. Munts V. A., Pavlyuk E. YU. M90. Osnovy teorii goreniya topliv. Uchebn. Posobie/V. A. Munts, E.YU. Pavlyuk. Ekaterinburg. GOU VPO UGTU-UPI. 2005. 102 s.
Review
For citations:
Shcheklein S.E., Dubinin A.M., Baranova O.V. Production of methanol from straw and hay of meadow grasses. Alternative Energy and Ecology (ISJAEE). 2022;(1):93-102. (In Russ.) https://doi.org/10.15518/isjaee.2022.01.093-102