Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Control of electromagnetic transition process in the system for regulating the output parameters of a solar power plant in the conditions of the republic of Tajikistan

https://doi.org/10.15518/isjaee.2020.10.001

Abstract

At present, as the demand for electricity increases in all sectors, there is an urgent need to introduce alternative renewable energy sources into modern energy systems. Renewable energy sources, which consist of solar (photovoltaic, PV), wind and hydro power, are key alternative sources of green «energy.» energies. Thanks to scientific and technological progress, the cost of photovoltaic solar radiation converters is constantly decreasing at a high rate, which makes it possible to build solar power plants of sufficiently large capacity. In the coming decades, solar energy will become an incentive for the economic development of countries that have the maximum "solar" resource. The Republic of Tajikistan is one of these countries with a high potential for solar energy.

The article presents an analysis of the resources and potential of solar energy in the Republic of Tajikistan. The study of electromagnetic transients in networks with photovoltaic solar power plants is performed. The main equations, simulation model and calculations of transients are presented, taking into account changes in voltage on DC buses. An algorithm for controlling the system of automatic control of output parameters is proposed. The analysis of dynamic and static modes in parallel operation of a solar power plant with the grid is carried out. A block diagram and computer model is constructed in the MATLAB package together with Simulink and Power System Blockset.

About the Authors

B. N. Sharifov
Technical University named after academician M.S. Osimi
Tajikistan

Sharifov B. N. – postgraduate student, Department of «Automated electric drive and electrical machines»

Dushanbe 734042



M. Kh. Safaraliev
UrFU named after the first President of Russia B. N. Yeltsin
Russian Federation

Safaraliev M. Kh. – postgraduate student, Department of «Automated Electrical Systems»

Ekaterinburg 620002



V. Z. Manusov
Novosibirsk State Technical University
Russian Federation

Manusov V. Z. – Doctor of Technical Sciences, Professor, Professor of the Department of «Power Supply Systems of Enterprises»

Novosibirsk 630073



S. E. Kokin
UrFU named after the first President of Russia B. N. Yeltsin
Russian Federation

Kokin S. E. – Doctor of Technical Sciences, Professor of the Department of «Automated Electrical Systems»

Ekaterinburg 620002



S. A. Dmitriev
UrFU named after the first President of Russia B. N. Yeltsin
Russian Federation

Dmitriev S. A. – Candidate of Technical Sciences, Associate Professor of the Department of «Automated Electrical Systems»

Ekaterinburg 620002



A. S. Tavlintsev
UrFU named after the first President of Russia B. N. Yeltsin
Russian Federation

Tavlintsev A. S. – Candidate of Technical Sciences, Associate Professor of the Department of «Automated Electrical Systems»

Ekaterinburg 620002



J. S. Ahyoev
Tajik Technical University named after Academician M. S. Oshimi
Tajikistan

Ahyoev J. S. – Candidate of Technical Sciences, Associate Professor of the Department «Electric Power Stations»

Dushanbe 734042



K. H. Gulyamov
Tajik Technical University named after Academician M. S. Oshimi
Tajikistan

Gulyamov K. H. – Candidate of Technical Sciences, Senior lecturer of the Department «Automated Electric Drive and Electric Machines»

Dushanbe 734042



References

1. Renewables 2020, Global Status Report/ REN 21 Paris-2020.Official website of NP "Russian solar energy Association". URL. http://pvrussia.ru (accessed 17.09.2016).

2. Safaraliev, M.K., Odinaev, I.N., Ahyoev, J.S., Rasulzoda, K.N., and Otashbekov, R.A. Energy Potential Estimation of the Region’s Solar Radiation Using a Solar Tracker. Appl. Sol. Energy 56, 270–275 (2020).

3. Ismagilov F. R., Sharifov B. N., Gaisin N. B. M., Teregulov T. R., Babkina N. L. Investigation of parallel operation of a solar power plant with a grid. /Journal Ufa aviation state technical university, 2016, no. 4 (74), pp. 71-79.

4. Kryuchkov I. P., Starshinov V. A., Gusev Yu. P., Piratorov M. V. perekhodnye protsessy V elektroenergeticheskikh sistemakh: [Transient processes in electric power systems: a textbook for universities].

5. Zinov'ev S. G. silovaya Elektronika: uchebnoe posobie dlya bakalavrov [Power electronics: a textbook for bachelors].

6. Schreiner R. T. Mathematical modeling of AC electric drives with semiconductor frequency converters. Yekaterinburg: Ural BRANCH of the Russian Academy of Sciences, 2000, 654 p.

7. Malek Hadi. Control of Grid-Connected Photovoltaic Systems Using Fractional Order Operator // All Graduate Theses and Dissertations 2014, paper 2157.

8. P. Rodriguez, R. Teodorescu, I. Candela, A.V. Timbus, M. Liserre, F. Blaabjerg, New positivesequence voltage detector for grid synchronization of power converters under faulty grid conditions // Power Electronics Specialists Conference PESC 06. 37th IEEE. 1–7, 18th June, 2006.

9. N.F. Guerrero-Rodríguez, L.C. Herrero-de Lucas. Performance study of a synchronization algorithm for a 3-phase photovoltaic grid-connected system under harmonic distortions and unbalances. // Electric Power Systems Research 2014, №116, pp 252–265.

10. P. Rodriguez, A. Luna, M. Ciobotaru, R. Teodorescu, F. Blaabjerg, Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions // IEEE Trans. Ind. Electron, 2011. - No. 58, pp. 127-138.

11. Klyuchev V. I. Teoriya elektroprivoda: uchebnoe posobie dlya vuzov [Theory of electric drive: a textbook for universities].

12. Curev P. Y. Development of systems of vector control of asynchronous drive on the base of specialized signal microcontrollers: Dis. Cand. tech.nauk: 05.09.03, Moscow, 2002, 256 p.

13. Ilinsky N. F., Kozachenko V. F. obshchiy Kurs elektroprivoda [General course of electric drive]. Moscow: Energoatomizdat, 1992, 544 p.

14. F. Ruz, A.B. Rey-Boué, J.M. Torrelo, A. Nieto, F.J. Canovas, Real time test benchmark design for photovoltaic grid-connected control systems, // Electric Power System. Research, 2011, No. 81, pp. 907-914.

15. Popov E. P. Teoriya lineynykh sistem avtomaticheskogo regulirovaniya I upravleniya [Theory of linear systems of automatic regulation and control].- 2nd ed., reprint. and add. - Moscow: Nauka. Chief editor of Phys. - math. lit, 1989, 304 p.

16. Herman-Galkin S. G. Computer modeling of semiconductor systems: a textbook: SPb KORONAPrint, 2001, 320 p.

17. Matlab/Simulink the MathWorks Inc. URL. http://www.mathworks.com.

18. Sridhar, V.; Umashankar, S. A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PVSTATCOM. Renew. Sustain. Energy Rev. 2017, 78, 138–156.

19. Chen, L.; Chen, H.; Li, Y.; Li, G.; Yang, J.; Liu, X.; Xu, Y.; Ren, L.; Tang, Y. SMES-Battery Energy Storage System for the Stabilization of a Photovoltaic-Based Microgrid. IEEE Trans. Appl. Supercond. 2018, 28, 1–7.

20. Olaszi, B.D.; Ladanyi, J. Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing. Renew. Sustain. Energy Rev. 2017, 75, 710–718.

21. Vavilapalli, S.; Padmanaban, S.; Subramaniam, U.; Mihet-Popa, L. Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications—Real Time Digital Simulation Implementation. Energies 2017, 10, 928.


Review

For citations:


Sharifov B.N., Safaraliev M.Kh., Manusov V.Z., Kokin S.E., Dmitriev S.A., Tavlintsev A.S., Ahyoev J.S., Gulyamov K.H. Control of electromagnetic transition process in the system for regulating the output parameters of a solar power plant in the conditions of the republic of Tajikistan. Alternative Energy and Ecology (ISJAEE). 2020;(28-30):12-23. https://doi.org/10.15518/isjaee.2020.10.001

Views: 199


ISSN 1608-8298 (Print)