Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Gas turbine operating as part of a thermal power plant with hydrogen storages

https://doi.org/10.15518/isjaee.2023.01.023-035

Abstract

Over the past few years, much attention has been paid to hydrogen energy. The development of hydrogen technologies leads to a reduction in the cost of both the hydrogen fuel itself and hydrogen systems, which leads to a wider use of this type of fuel in various branches of the fuel and energy complex.
At the moment, the primary task is to increase the efficiency of combined cycle power units, reduce wear and tear of equipment during peak electricity consumption, reliable backup of energy supply, and reduce harmful emissions during the generation of heat and electricity. One of the modern methods for implementing these challenges is the use of energy storage devices. A new solution to this problem can be the introduction of hydrogen storage in the cycle of a thermal power plant.
The article considers the modernization of a combined-cycle power unit with a gas turbine PG6111FA manufactured by «General Electric» with a rated power of 80 MW, a waste heat steam boiler manufactured by JSC «EnergoMashinostroitelny » Alliance, and a steam turbine KT-33/36-7.5/0.12. During periods of night unloading, the effective efficiency of the power unit drops, so it is necessary not to unload the equipment, but to turn on the electrolyzers for the production of hydrogen fuel for further use in hydrogen fuel cells. The operating time of the hydrogen system with an electrolyzer is not limited in time, the operation of the electrolyzer takes place during night unloading periods (from 4 to 7 hours a day), while the hydrogen storage works constantly, in this mode of operation, the service life is about 15 years, for stable operation it is necessary hydrogen fuel and periodic maintenance. An important component of the hydrogen system is a hydrogen battery with minimal storage losses, in contrast to traditionally installed thermal storage. Studies of the use of hydrogen storage in the circuits of thermal power plants have shown their effectiveness, including their implementation allows you to increase the efficiency, reduce the cost of own needs of the power plant, reduce emissions in the production of electricity, a leveled load schedule allows you to increase the life of the gas turbine, as the turbine works in basic mode. The use of accumulators in thermal power plants increases the competitiveness among traditional energy generation systems.

About the Authors

G. E. Marin
Kazan State Power Engineering University; JSC «Tatenergo» branch «Kazan CHP-2»
Russian Federation

George Marin - Senior Lecturer, Senior Engineer of Power Units

Scopus Author ID: 6701719983
Research ID: AGM-9371-2022



B. M. Osipov
Kazan State Power Engineering University
Russian Federation

Boris Osipov - Candidate of Technical Sciences, Associate Professor

Scopus Author ID: 6701719983
Research ID: AGM-9371-2022



A. V. Titov
Kazan State Power Engineering University
Russian Federation

Alexandr Titov - Candidate of Technical Sciences

Scopus Author ID: 56343587900
Research ID: GLR-9981-2022



A. R. Akhmetshin
Kazan State Power Engineering University
Russian Federation

Azat Akhmetshin - Candidate of Technical Sciences, Associate Professor

Scopus Author ID: 57211796456
Research ID: AGM-7165-2022



References

1. Mendeleev, D.I. Study of the work and efficiency improvement of combined-cycle gas turbine plants / D.I. Mendeleev, Yu.Ya. Galitskii, G.E. Marin, A.R. Akhmetshin // E3S Web of Conferences. – 2019. – Vol. 124. – Art. no.05061. – DOI: 10.1051/e3sconf/201912405061.

2. Nowotny, J. Impact of hydrogen on the environment / J. Nowotny, T.N. Veziroglu // Alternative Energy and Ecology (ISJAEE). – 2019. – Vol. 01-03. – P. 16-24. – DOI: 10.15518/isjaee.2019.01-03.016-024.

3. Contreras, V.M. Methodology of assessment of renewable energy resources in Venezuela / V.M. Contreras // Alternative Energy and Ecology (ISJAEE). – 2014. – Vol. 11. – Р. 56-61.

4. Solomin, E.V. T he use of wind-hydrogen uninterrupted power supply plant in different climatic conditions / E.V. Solomin, I.M. Kirpichnikova, R.A. Amerkhanov, D.V. Korobatov, M. Lutovats, A.S. Martyanov // Alternative Energy and Ecology (ISJAEE). – 2018. – Vol. 13-15. – P. 30-54. – DOI: 10.15518/isjaee.2018.13-15.030-054.

5. Marin, G. Study of the properties of fuel gas in gas turbine plants depending on its composition lecture notes in mechanical engineering / G . M arin, B . O sipov, D . Mendeleev // Lecture Notes in Mechanical Engineering. – 2022. – P. 403-412. – DOI: 10.1007/978-981-16-9376-2_38.

6. Benato, A. Combined cycle power plants: A comparison between two different dynamic models to evaluate transient behaviour and residual life / A. Benato, A. Stoppato, S. Bracco // Energy Conversion and Management. – 2014. – Vol. 87, P. 1269-1280. – DOI: 10.1016/j.enconman.2014.06.017.

7. Blakey, S. Aviation gas turbine alternative fuels: A review / S. Blakey, L. Rye, C.W. Wilson // Proceedings of the Combustion Institute. – 2011. – Vol. 36. – Iss. 2. – P. 2863-2885. – DOI: 10.1016/j.proci.2010.09.011.

8. Marin, G.E. Analysis of changes in the thermophysical parameters of the gas turbine unit working fluid depending on the fuel gas composition / G.E. Marin, D.I. Mendeleev, A.R. Akhmetshin // 2019 International Multi- Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019. – 2019. – Art. no. 8934021. – DOI: 10.1109/FarEastCon.2019.8934021.

9. Salamov, O.M. Prospects of obtaining alternative fuel from various biomass and waste species in azerbaijan / O.M. Salamov, F.F. Aliyev // Alternative Energy and Ecology (ISJAEE). – 2019. – Vol. 01-03. – P. 25-41. – DOI: 10.15518/isjaee.2019.01-03.025-041.

10. Brizitsky, O.F. About the prospects of engine building transformation to hydrogen-containing fuel / O.F. Brizitsky, V.Y. Terentyev, V.V. Barelko, V.A. Kirillov, V.A. Sobyanin, P.V. Snytnikov, V.A. Burtsev, L.A. Bykov, M.V. Kuznetsov // Alternative Energy and Ecology (ISJAEE). – 2014. – Vol. 20. – P. 95-102. – DOI: 10.15518/isjaee.2014.20.008.

11. Marin, G. Study of the effect of fuel temperature on gas turbine performance / G. Marin, D. Mendeleev, B. Osipov, A. Akhmetshin // E3S Web of Conferences. – 2020. – Vol. 178. – Art. no. 01033. – DOI: 10.1051/e3sconf/202017801033.

12. Ermolaev, D.V. A comprehensive study of thermotechnical and thermogravimetric properties of peat for power generation / D.V. Ermolaev, S.S. Timofeeva, S.I. Islamova, K.S. Bulygina, M.F. Gilfanov // Biomass Conversion and Biorefinery. – 2019. – Vol. 9. Iss. 4. – P. 767-774. – DOI: 10.1007/s13399-019-00472-8.

13. Madhlopa, A. Gas turbine fuels and fuel systems / A. Madhlopa // Green Energy and Technology. – 2018. – P. 27-49. – DOI: 10.1007/978-3-319-68388-1_2.

14. Cozzolino, R. Thermodynamic performance assessment of a novel micro-CCHP system based on a low temperature PEMFC power unit and a half-effect Li/Br absorption chiller / R. Cozzolino // Energies. – 2018. – Vol. 11. – Iss. 2. – Art. no. 315. – DOI: 10.3390/en11020315.

15. Taufan, A. Experimental performance of adsorption chiller with fin and tube heat exchanger / A. Taufan, E. Djubaedah, A. Manga, Nasniddin // AIP Conference Proceedings. – 2018. – Vol. 2001. – Art. no. 020012. – DOI: 10.1063/1.5049972.

16. Lalor, G. Frequency control on an island power system with increasing proportions of combined cycle gas turbines / G. Lalor, M. O'Malley // 2003 IEEE Bologna PowerTech - Conference Proceedings. – 2003. – Vol. 4. – Art. no. 1304727. – P. 228-234. – DOI: 10.1109/PTC.2003.1304727.

17. Wai, C. A comparative study of electric power market transaction mode // North China Electric Power University. – 2006. – P. 6.

18. Cheung, K.W. Energy and ancillary service dispatch for the interim ISO New England electricity market / K.W. Cheung, P. Shamsollahi, D. Sun, J. Milligan, M. Potishnak // IEEE Transactions on Power Systems. – 2000. – Vol. 15. – Iss. 3. – P. 968-974. – DOI: 10.1109/59.871720.

19. Schweppe, F.C. Spot pricing of electricity / F.C. Schweppe, M.C. Caramanis, R.D. Tabors, R.E. Robn // Kluwer Academic Publishers. – Boston. Massachusetts. – 1998. – P. 355. – ISBN 0-89838-260-2.

20. Chew, Z.J. Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting / Z.J. Chew, M. Zhu // 2015 IEEE SENSORS - Proceedings. – 2015. – Art. no. 7370663. – DOI: 10.1109/ICSENS.2015.7370663.

21. Feng, X. Capacity fade-based energy management for lithium-ion batteries used in PV systems / X. Feng, H.B. Gooi, S. Chen // Electric Power Systems Research. – 2015. – Vol. 129. – P. 150-159. – DOI: 10.1016/j.epsr.2015.08.011.

22. Lee, S.G. Optimal design and operating conditions of the CO2 liquefaction process, considering variations in cooling water temperature / S.G. Lee, G.B. Choi, J.M. Lee // Industrial and Engineering Chemistry Research. – 2015. – Vol. 54. – Iss. 51. – P. 12855-12866. – DOI: 10.1021/acs.iecr.5b02391.

23. Sankaran, K. Carbon emission and plastic pollution: How circular economy, blockchain, and artificial intelligence support energy transition? / K. Sankaran // Journal of Innovation Management. – 2019. – Vol. 7. – Iss. 4. – P. 7-13. – DOI: 10.24840/2183-0606_007.004_0002.

24. Sorrentino, S. Welding technologies for ultrasupercritical power plant materials / S. Sorrentino // Materials for Ultra-Supercritical and Advanced Ultra- Supercritical Power Plants. – 2017. P. 247-319. – DOI: 10.1016/B978-0-08-100552-1.00009-9.

25. Shi, H. Sensitivity evaluation of AP1000 nuclear power plant best estimation model / H. Shi, Q. Cai, Y. Chen // Science and Technology of Nuclear Installations. – 2017. – Vol. 2017. – Art. no. 9304520. – DOI: 10.1155/2017/9304520.

26. Choudhary, T. Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization / T. Choudhary, Sanjay // Energy. – 2017. – Vol. 134. – P. 1013-1028. – DOI: 10.1016/j.energy.2017.06.064.

27. Karpushenkava, L.S. Thermodynamic properties and hydrogen accumulation ability of fullerene hydride C60H36 / L.S. Karpushenkava, G.J. Kabo, V.V. Diky // Fullerenes Nanotubes and Carbon Nanostructures. – 2007. – Vol. 15. – No 4. – P. 227-247. – DOI: 10.1080/15363830701421439.

28. Tarasov, B. P. Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation / B. P. Tarasov, M. V. Lototskii, V. A. Yartys' // Russian Journal of General Chemistry. – 2007. – Vol. 77. – No 4. – P. 694-711. – DOI: 10.1134/S1070363207040329.

29. Fakioğlu, E. A review of hydrogen storage systems based on boron and its compounds / E. Fakioğlu, Yu. Yürüm, T.N. Veziroğlu // Alternative Energy and Ecology (ISJAEE). – 2018. – Vol. 7-9. – P. 86-94. – DOI: 10.15518/isjaee.2018.07-09.086-094.

30. Shau, A. Improvement on efficiencies of dilute alkaline water electrolyzer using membranes / A. Shau, P. De, P. Ray // International Journal of Hydrogen Energy. – 2016. – Vol. 41. – Iss. 48. – P. 22652-22662. – DOI: 10.1016/j.ijhydene.2016.11.009.

31. Tejwani, V.S. Control strategy for utility interactive hybrid P V H ydrogen S ystem / V .S. T ejwani, B .N. Suthar // IEEE Power and Energy Society General Meeting. – 2016. – Art. no. 7741666. – DOI: 10.1109/PESGM.2016.7741666.

32. Gutiérrez-Martín, F. Power-to-SNG technology for energy storage at large scales / F. Gutiérrez-Martín, L.M. Rodríguez-Antón // International Journal of Hydrogen Energy. – 2016. –Vol. 41. – Iss. 42. – P. 19290- 19303. – DOI: 10.1016/j.ijhydene.2016.07.097.

33. Kiciński, W. Carbon gel-derived Fe–N–C electrocatalysts for hydrogen-air polymer electrolyte fuel cells / W. Kiciński, S. Dyjak, W. Tokarz // Journal of Power Sources. – 2021. – Vol. 513. – P. 230537. – DOI: 10.1016/j.jpowsour.2021.230537.

34. Jaouen, F. Toward platinum group metal-free catalysts for hydrogen/air proton-exchange membrane fuel cells / F. Jaouen, D. Jones, N. Coutard, V. Artero, P. Strasser, A. Kucernak // Johnson Matthey Technology Review. – 2018. – Vol. 62. – No 2. – P. 231-255. – DOI: 10.1595/205651318X696828.

35. Nazarychev, S.A. Full compensation of reactive power in electric networks 0.4-10kV / S.A. Nazarychev, A.R. Akhmetshin, S.O. Gaponenko // Journal of Physics: Conference Series. – 2020. – Vol. 1588. – Iss. 1. – Art. no. 012036. – DOI: 10.1088/1742-6596/1588/1/012036.

36. Suslov, K. Development of the methodological basis of the simulation modelling of the multi-energy systems / K . S uslov, V . P iskunova, D . G erasimov, E . Ukolova, A. Akhmetshin, P. Lombardi, P. Komarnicki // E3S Web of Conferences. – 2019. – Vol. 124. Art. no. 01049. – DOI: 10.1051/e3sconf/201912401049.


Review

For citations:


Marin G.E., Osipov B.M., Titov A.V., Akhmetshin A.R. Gas turbine operating as part of a thermal power plant with hydrogen storages. Alternative Energy and Ecology (ISJAEE). 2023;(1):23-35. (In Russ.) https://doi.org/10.15518/isjaee.2023.01.023-035

Views: 368


ISSN 1608-8298 (Print)