Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The salts hydrate phase change materials heat accumulator efficiency evaluating methodology

https://doi.org/10.15518/isjaee.2023.01.077-105

Abstract

Currently the aim of heat-saving energy sector is to increase the efficiency of consuming energy and fuel resources through the creation and modernization of technologies capable of efficient collection and long-term storage of heat energy. A more rational consumption of heat energy, being in use under supervision when needed, will make it possible to pass on to energy storage policy of resource consumption. However, one of the main factors determining the competitiveness of the developing low-energy technologies is the financial component. The core of thermal energy storage system, contributing up to 80 % to the cost of heat storage systems, are heat-accumulating materials. This raises the issues o f the optimization o f the developed storage technologies a nd of the use of heat energy in the required volume, which is accompanied by the need to test the created heat storage materials in practical exploitation. The article proposes a step-by-step approach to optimizing the properties of heat storage compositions to improve their efficient operation in a heat accumulator. This necessitates the consideration of the parameters that ensure the efficient and safe operation of heat accumulator due to the use of advanced phase change materials based on hydrate salts. The provided algorithm, consisting of a methodology for the selection of hydrate salts and a methodology for investigating heat storage materials, was tested in creating the heat storage material based on CH3COONa·3H2O, and there were shown the differences between the results presented in laboratory conditions and results presented in experimental conditions of the heat storage material. During the synthesis of a mixture of CH3COONa·3H2O and Na4P2O7·10H2O, the heat capacity in the liquid phase increased significantly from 2.37 for CH3COONa·3H2O to 5.64 for phase change heat storage materials, and the enthalpy of melting from 226 to 259.8 kJ/kg. Subcooling ΔT decreased from 90 to 1.45 °C, while the melting point remained at 58 °C. In these circumstances, the cost of phase change heat storage materials increased by 1.5 times compared to the starting acetate and amounted to 340 rubles/kg. This shows the significance of the results achieved during the testing of the efficiency of phase change heat storage materials under the conditions of the developmental prototype of the heat accumulator with the purpose of further optimization. The developed methodology is useful for researchers planning the industrial synthesis of derived phase change heat storage materials in order to avoid the low efficiency of the prototype

About the Authors

D. S. Testov
Dubna State University
Russian Federation

Testov Dmitry Sergeevich - Ph.D. student, Senior Lecturer of the Chemistry Department

Universitetskaya str., 19, Dubna, 141980



S. V. Morzhukhina
Dubna State University
Russian Federation

Morzhukhina Svetlana  Vladimirovna - Ph.D. in Chemistry, Assistant Professor at the Heat of the Chemistry Department

Universitetskaya str., 19, Dubna, 141980



A. M. Morzhukhin
Dubna State University
Russian Federation

Morzhykhin Artem Markovich - Ph.D. student, Senior Lecturer of the Chemistry Department

Universitetskaya str., 19, Dubna, 141980



V. R. Gashimova
Dubna State University
Russian Federation

Gashimova Valeriia Ruslanovna - Postgraduate
student, assistant, of the Department of Chemistry,
New Technologies and Materials

Universitetskaya str., 19, Dubna, 141980



A. L. Gasiev
Dubna State University
Russian Federation

Gasiev Azamat Lvovich - Student of the Department of Chemistry, New Technologies and Materials

Universitetskaya str., 19, Dubna, 141980



References

1. Economic value of heat storage systems. Compact Retrofit Advanced Thermal Energy storage, 2016:47.

2. BarEconomic value of heat storage systems. Compact Retrofit Advanced Thermal Energy storage, 2016:47.reneche C., Navarro H., Serrano S., Cabeza L.F., Fernández A.I. New database on phase change materials for thermal energy storage in buildings to help PCM selection. Energy Procedia, 2014;57:2408-2415.

3. Cabeza L.F., Castell A., Barreneche C., de Gracia A., Fernández A.I. Materials used as PCM in thermal energy storage in buildings: A review. Ren. and Sust. Energy Reviews, 2011;15:1675-1695.

4. Pat. 2020621948 The Russian Federation Databases of properties of heat storage materials for heating and hot water supply systems (PCM DB) (Basi dannikh svoystv teploakkumuliruyushchikh materialov dlya system otopleniya i goryachego vodosnabzheniya (BD TAM)) / Morzhukhina S.V., Morzhukhin A.M., Testov D.S.; applicant and patent holder AV Technologies LLC N 2020621867 application 10.15.2020, Bull. №10 - 6.95 MB (in Russ.).

5. Ushak S., Vega M., Lovera-Copa J.A., Pablo S., Lujan M., Grageda M. Thermodynamic modeling and experimental verification of new eutectic salt mixtures as thermal energy storage materials. Sol. Energy Mat. & Sol.Cells, 2020;209:110475.

6. Energy storage roadmap. Technology and institution. Innovation for Cool Earth Forum. November, 2017:49.

7. Purohit B.K., Sistla V.S. Inorganic salt hydrate for thermal energy storage application: A review. Energy Storage, 2021;3:e212.

8. Telkes M. Solar house heating: problem of heat storage. Heat. Vent, 1947;44.

9. Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 1983;30:313-332.

10. Mozgovoy A.G., Shpilrain E.E., Dibirov M.A. Thermophysical properties of heat storage materials. Crystalline Hydrates: Reviews on the Thermophysical Properties of Substances (Teplophizicheskiye svoystva teploakkumuliruyushchikh materialov. Krystallogidraty: Obzory po teplophisicheskim cvoystvam veshchestv). TFTs. Moscow: IVTAN. 1990;82(2):106. (in Russ.).

11. Zalba B., Marın J.M., Cabeza L.F., Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. App. Therm. Engin, 2003;23:251–283.

12. Kenisarin M., Mahkamov K. Review. Salt hydrates as latent heat storage materials: Thermophysical properties and costs. Sol. Energy Mat. & Sol.Cells, 2016;145:255-286.

13. Sobolev A.Yu. Study of the phase transformations of sodium acetate trihydrate by thermal analysis methods. (Issledovaniye fazovikh prevrashcheniy tryokhvodnogo acetate natriya metodami termicheskogo analiza) Scientific practices of the Donetsk National Technical University. Series: Chemistry and chemical technology, 2014;1(22). (in Russ.).

14. Green W.F. The “melting-point” of hydrated sodium acetate: solubility curves. J. Phys. Chem, 1908;12 (9):655–660.

15. Guion J., Sauzade J.D., Laügt M. Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim. Acta, 1983;67(2):167–179.

16. Zhang Y., Jiang Y., Jiang Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol,1999;10:201–205.

17. Meisingset K.K., Grønvild F. Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. III. CH3CO2Na∙3H2O, CH3CO2Li·2H2O and (CH3CO2)2Mg·4H2O. J. Chem. Thermdyn., 1984;16 (9):523–536.

18. Naumann R., Fanghänel T., Emons H.H. Thermoanalytical investigation of sodium acetate trihydrate for application as a latent heat thermal energy storage material. J. Therm. Anal., 1988;33 (3):685–690.

19. Wood D.G., Brown M.B., Jones S.A., Murnane D. Characterization of latent heat-releasing phase change materials for dermal therapies. J. Phys. Chem., 2011;115(16):8369–8375.

20. Inaba H., Otake H., Nozu S., Fukuda T. A study on latent heat storage using a supercooling condition of hydrate (1st report, An estimation of physical properties of hydrate sodium acetate including a supercooling condition). Trans. Jpn. Soc. Mech. Eng., 1992;58 (553):2848–2856. (In Japanese).

21. Pebler. A. Dissociation vapor pressure of sodium acetate trihydrate. Thermochim. Acta, 1975;13:109– 114.

22. Wada T., Yamamoto R. Studies on salt hydrate for latent heat storage. I. Crystal nucleation of sodium acetate trihydrate catalysed by tetrasodium pyrophosphate decahydrate. Bul. Chem. Soc. Jpn., 1982;55:3603– 3606.

23. Naumann R., Emons H.H. Results of thermal analysis for investigation of salt hydrates as latent heatstorage materials. J. Therm. Anal. Calorim., 1989;35:1009-1031.

24. Hong H., Kim S.K, Kim Y-S. Accuracy improvement o f T -history method for measuring heat of fusion of various materials. Int J Refrig., 2004;27:360- 366.

25. Lane G.A. Low temperature heat storage with phase change materials. Int. J. Ambient Energy., 1980;1:155–168.

26. Aboul-Enein S., Ramadan M.R.I. Storage of low temperature heat in salt- hydrate melts for heating applications. Sol. Wind Technol., 1988;5:441–444.

27. Abhat A., Aboul-Enein S. and Malatidis N.A. Latent heat thermal energy storage - Determination of properties of storage media and development of a new heat transfer system (in German). Report N BMFT-FB-T 82-016, German Ministry for Science and Technology, Bonn, FRG, 1982.

28. Magin R.L., Mangum B.W., Statler I.A., Thornton D.D. Transition temperatures of the hydrates of Na2SO4, Na2HPO4 and KF as fixed points in biomedical thermometry. J. Res. Nat. Bur. Stand., 1981;86(2):181-192.

29. Lorsch H.G., Kauffmann K.W., Denton I.C. Thermal energy storage for solar heating and off-peak conditioning. Z/Energy Convers, 1975;15(1):1-8.

30. Ewing W.W., Mc.Govern I.I., Matheus G.E. The temperature- composition relations of the binary system zink nitrate-water. J. Am. Chem. Soc., 1933;55(12):4827—4830.

31. Jain S.K. Density, viscosity, and surface tension of some single molten hydrated salts. J. Chem. Eng. Data, 1978;23(2):170–173.

32. Jain S.K., Tamamuski R. Solution properties of the molten hydrates of zinc nitrate. Can. J. Chem., 1980;58(16):1697-1703.

33. Xiao Q., Yuan W., Li L., Xu T. Fabrication and characteristics of composite phase change material based on Ba(OH)2∙8H2O for thermal energy storage. Sol. Energy Mat. & Sol.Cells, 2018;179:339-345.9.

34. Kumar R.S., Krishna D.J. Differential Scanning Calorimetry (DSC) analysis of latent heat storage materials for low temperature (40-80 °C) solar heating applications. Int. J. Eng. Res. Technol., 2013;2(8):429-455.

35. Telkes M. Thermal storage in salt-hydrates. Solar Materials Science, 1980;1:377-404.

36. Beaupere N., Soupremanien U., Zalewski L. Nucleation triggering methods in supercooled phase change materials (PCM), a review. Thermochimica Acta, 2018;670:184-201.

37. Kumar N., Banerjee D., Chaves R. Jr. Exploring additives for improving the reliability of zinc nitrate hexahydrate as a phase change material (PCM). Journal of Energy Storage, 2018;20:153-162.

38. Morzhukhin A.M., Testov D.S., Morzhukhina S.V., Korokin V.Zh. Selection Criteria and Thermophysical Properties of Low-Temperature Heat Storage Materials for Thermal Energy Storage Systems (Review) (Kriterii vibora i teplofizicheskiye svoystva nizkotemperaturnikh teploakkumuliruyushchikh materialov dlya system khrneniya teplovoy energii (obzor)). ISJAEE, 2019;22-27:92-106. (in Russian).

39. Sharma A., Tyagi V.V., Chen C.R., Buddhi D. Review on thermal energy storage with phase change materials and applications. Ren. and Sust. Energy Reviews, 2009;13:318-345.

40. Nazir H., Batoo M., Bolivar Osorio F. J., Isaza- Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Trans., 2019;129:491-523.

41. Morzhukhin A.M., Testov D.S., Morzhukhina S.V. Selection principles and investigation of substances for synthesis of composite medium-temperature phase change materials for space heating and domestic hot water. Materials Science Forum ISSN: 1662-9752, 2020;989:165-171.

42. Pielichowska K., Pielichowski K. Phase change materials for thermal energy storage. Prog. Mat. Sci., 2014;65:67-123.

43. Risti A., Furbo S., Moser C., Schranzhofer H., Lazaro A. IEA SHC Task 42 / ECES Annex 29 WG A1: Engineering and processing of PCMs, TCMs and sorption materials. Energ. Proc., 2016;91:207-217.

44. Yang K., Zhu N., Chang Ch., Wang D., Yang Sh., Ma Sh. A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. Energy, 2018;165:1085- 1096.

45. He M., Yang L., Lin W., Chen J., Mao X., Ma Zh. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon- based nanoparticles for solar thermal energy storage. Journal of Energy Storage, 2019;25:100874.

46. Rathod M.K., Kanzaria H.V. A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment. Materials & Design, 2011;32(6):3578-3585.

47. Choudhury H., Cary R. Barium and barium compounds. World Health Organization & International Programme on Chemical Safety, 2001:57.

48. Karapetyants M.Kh. Methods of comparative calculation of physical and chemical properties (Metodi sravnitelnogo raschyota fiziko-khimicheskix svoystv). Moscow: Nauka. 1965:404. (in Russ.).

49. Amer A. E., Rakhmani K., Lebedev V. A. Selection of materials with a phase transition using the hierarchy analysis method (HAM) (Vibor materialov s fazovim perekhodom s ispolsovaniem metoda analiza ierarkhiy (MAI)). International Scientific Research Journal, 2020;6-1(96):35-48. (in Russ.)

50. Testov D.S., Morzhukhina S.V., Morzhukhin A.M. The concept of selecting heat-storing materials using a new algorithm for multi-criteria optimization, including a modified hierarchy analysis method (mHAM) (Koncepciya vibora teploakkumuliruyushchikh mateialov s ispolsovaniem novogo algoritma mnogokriterialnoy optimizacii, vklyuchayushchey modificirovanniy metod analiza ierarkhii (mMAI)). Physical and analytical chemistry of natural and technogenic systems: a collection of proceedings of the All-Russian Conference with international participation. Dubna: State. University "Dubna", 2021:160-167. (in Russ.).

51. Srikar V.T., Spearing S.M. Materials selection in micromechanical design: An application of the Ashby approach. J. Microelectromechanical Syst., 2003. V;12(1):3–10.

52. Tebaldi M.L., Belardi R.M., Montoro S.R. Polymers with nano-encapsulated functional polymers: encapsulated phase change materials. Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. William Andrew Publishing, 2016:155- 169.

53. Yinping Z., Y i J . A s imple method, t he T - history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol., 1999;10:201-205.

54. Lorsch H.G. Thermal energy storage for solar heating. ASHRAE J, 1975;17:47-52.

55. Aleksandrov V.D, Sobolev A.Yu. Thermal effects during melting and crystallization in the system sodium carbonate decahydrate–sodium sulfate decahydrate by the DTA method (Teploviye effecty pri plavlenii i cristallizacii v sisteme karbonat natriya desyativodniy – sulfat natriya desyativodniy metodom DTA). Scientific practices of the Donetsk National Technical University. Series: Chemistry and chemical technology, 2012;19:45-48. (in Russ.).

56. Aleksandrov V.D., Sobol O.V., Soboleva A.Yu., Marchenkova Yu.A. The use of heataccumulating materials based on crystalline hydrates of sodium salts in vehicles (Ispolsovaniye teploakkumuliruyushchikh materialov na osnove kristallogidratov soley natriya v transportnikh sredstvakh). Bulletin of the Donetsk Academy of Automobile Transport, 2015;P:34- 41. (in Russ.).

57. Wei G. et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Ren. and Sust. Energy Reviews, 2018;81:1771-1786.

58. Voigt W., Zeng D. Solid–liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials. Pure and applied chemistry, 2002;74(10):1909-1920.

59. Tao Y. B., He Y. L. A review of phase change material and performance enhancement method for latent heat storage system. Ren. and Sust. Energy Reviews, 2018;93:245-259.

60. Kibria M. A. et al. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy conversion and management, 2015;95:69- 89.

61. Zhou D., Eames P. Thermal characterisation of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures. Sol. Energy Mat. & Sol.Cells, 2016;P:1019-1025.

62. Qureshi Z. A., Ali H. M., Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. International Journal of Heat and Mass Transfer, 2018;127:838-856.

63. Kośny J. PCM-Enhanced Building Components. An Application of Phase Change Materials in Building Envelopes and Internal Structures. (Engineering Materials and Processes). Boston, MA: Springer. 2015:280.

64. Pouillen P. Les transformations polymorphiques des cristaux de nitrates de metaux bivalents hexahydrates (NO3)2 -·6H2O ou M= Zn, Mg, Mn, Cu. Comptes rendus hebdomadaires des seances de l academie des sciences, 1960;250(20):3318-3319.

65. Zahir M.H., Shamseldin A.M., Saidur R., Fahad A. A.-S. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. App. Energ., 2019;240:793–817.

66. Safari A., Saidur R., Sulaiman F.A., Xua Y., Dong J. A review on supercooling of Phase Change Materials in thermal energy storage systems. Ren. and Sust. Energy Reviews, 2017;17:905-919.

67. Taylor R.A., Tsafnat N., Washer A. Experimental characterisation of sub-cooling in hydrated salt phase change materials. App. Therm. Engin., 2016;93:935–938.

68. Aleksandrov V. D., Pokintelitsa E. A., Sobolev A. Yu. Thermal hysteresis during melting and crystallization of macroobjects (Termicheskiy gisteresis pri plavlenii i kristallizacii makroob’ektov). Journal of Technical Physics, 2017;87(5):722-725. (in Russ.).

69. Eastman J. A, Choi U. S, Li S, Thompson L. J, Lee S. Enhanced thermal conductivity through the development of nanofluids. MRS Proc. Cambridge Univ Press., 1996:3.

70. Wu Y., Wang T. Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage. Energy conversion and management, 2015;101:164-171.

71. Elsayed A. A., Lebedev V. A. Influence of thermal cycling on the choice of a working fluid with a phase transition for heat accumulators of solar heat supply systems (Vliyaniye termociklirovaniya na vibor rabochego tela s fazovim perekhodom dlya teploakkumulyatorov system solnechnogo teplosnabzheniya). Bulletin of the Irkutsk State Technical University, 2020;24(3(152)):570-581. (in Russ.).

72. Gomez J.C. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications. National Renewable Energy Laboratory, September 2011:36.

73. Gabriela L. Thermal Energy Storage with Phase Change Material. Leon. El. J. of Pract. and Tech., 2012:75-98.

74. Sarbu I., Sebarchievici C. A Comprehensive Review of Thermal Energy Storage. Sustainability, 2018;10(1):32.

75. Snezhkin Yu.F., Mikhailik V.A., Korinchevskaya T.V., Vorobyov L.I., Dekusha L.V. Specific heat capacity and thermal conductivity of heat storage materials based on paraffin, lignite and polyethylene waxes (Udelnaya teployomkost’ i teploprvodnost’ teploakkumuliruyushchikh materialov na ocnove parafina, burougolnogo i polietilenovogo voskov). Problemele energeticii regionale. Termoenergetică, 2014;2(25):38-46. (in Russ.).

76. Nkwetta D. Nch., Haghighat F. Thermal energy storage with phase change material - A state-of-the art review. Sust. Cit. and Soc., 2014;10:87-100


Review

For citations:


Testov D.S., Morzhukhina S.V., Morzhukhin A.M., Gashimova V.R., Gasiev A.L. The salts hydrate phase change materials heat accumulator efficiency evaluating methodology. Alternative Energy and Ecology (ISJAEE). 2023;(1):77-105. (In Russ.) https://doi.org/10.15518/isjaee.2023.01.077-105

Views: 415


ISSN 1608-8298 (Print)