

Use of hydrogen produced by the air conversion of motor diesel fuel in an electrochemical generator
https://doi.org/10.15518/isjaee.2023.02.082-092
Abstract
The wide spread of diesel-electric generators in our country is due to the need to reserve responsible energy consumers and private households, in cases of loss of centralized energy supply. The large territory of the country, the development of the Far Eastern and Arctic territories also leads to the need to use diesel-electric generators and organize the supply of large volumes of diesel fuel to these remote regions.
Unlike stationary thermal power plants, such autonomous power plants have practically no combustion product cleaning systems, have low efficiency, high specific fuel consumption, high cost of energy production, have a limited motor resource and need constant maintenance.
At the same time, the current level of development of direct methods of converting the chemical energy of fuel into an electric current based on electrochemical generators makes it possible to create an autonomous power plant operating on traditional fuels, devoid of these shortcomings.
This article considers an innovative technology of combined production of electric and thermal energy using the preliminary conversion of diesel fuel into gas synthesis, followed by its supply to a high-temperature electrochemical generator. A scheme of the full technological cycle of the installation, including the air conversion of diesel fuel into synthesis gas and its further use in SOFC and waste heat boiler, has been developed. On the basis of heat balances of the burner, ECG and waste-heat boiler-utilizer, electrical efficiency of the solid oxide fuel cells’ (SOFC) battery, chemical efficiency of the burner, the temperature at the SOFC anode, the EMF of the planar cell, a portion of hydrogen oxidized at the SOFC anode, specific consumption of diesel fuel for the production of electrical and heat power were calculated. Specific consumption of diesel fuel for the production of electrical and heat power was found to be equal to 114 g/kWh (162 g r.f./kW·h) and 31.7 kg/GJ (45.1 kg r.f./GJ, 189 kg r.f./ Gcal), respectively. Specific consumption of diesel fuel corresponds to a high-efficient heat power-station and more than 3 times lower than in modern diesel generators of equal power.
About the Authors
S. E. ShchekleinRussian Federation
Sergey E. Shcheklein - Doctor of technical science, professor, Urals Federal University, head of Atomic Stations and Renewable Energy Sources Department.
Yekaterinburg
A. M. Dubinin
Russian Federation
Alexey M. Dubinin - Doctor of Technical Sciences, Professor at the Department of Nuclear Stations and Renewable Energy Sources of the Ural Federal University named after the First President of Russia B.N. Yeltsin.
Yekaterinburg
References
1. Shpil'rain EH.EH., Malyshenko S.P., Kuleshov G.G. Vvedenie v vodorodnuyu ehnergetiku.-M.: Ehnergoatomizdat, 1984.
2. Pilar Lisbona, Luis M. Romeo Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC/GT//International Journal of Hydrogen Energy, Volume 33, Issue 20, October 2008, P. 5755-5764.
3. Promes E.J.O., Woudstra T., Schoenmakers L., Oldenbroek V., Thallam Thattai A., Aravind P.V. Thermodynamic evaluation and experimental validation of 253 MW Integrated Coal Gasification Combined Cycle power plant in Buggenum, Nether-lands//Applied Energy, Volume 155, 1 October 2015, P.181-194.
4. Solodova N. L., Cherkasova E. I., Salakhov I. I., Tutubalina V. P. Vodorod - ehnergonositel' i reagent. Tekhnologii ego polucheniya // Izvestiya vys-shikh uchebnykh zavedenii. Problemy ehnergetiki. – 2017. – T. 19. – № 11-12. – S. 39-50.
5. Filimonova A. A.,Chichirov A. A. ,Chichirova N. D.,Filimonov A. G., Pechenkin A. V. Perspektivy razvitiya vodorodnoi ehnergetiki v Tatarstane// Izvestiya vysshikh uchebnykh zavedenii. Problemy ehnergetiki. – 2020.–T..22.– № 6, S. 79-91.
6. Munts V.A., Volkova YU.V., Plotnikov N.S., Dubinin A.M., Tuponogov V.G., Chernyshov V.A. Issledovanie kharakteristik ehnergeticheskoi ustanovki 5 kWt na tverdooksidnykh toplivnykh ehlementakh s parovym riformingom prirodnogo gaza// Teploehnergetika. 2015. № 11. S. 15-20.
7. Dubinin A.M., Shcheklein S.E. Ugol'naya mini-TEHTS na osnove gazogeneratora i ehlektrokhimicheskogo generatora//Mezhdunarodnyi nauchnyi zhurnal Al'ternativnaya ehnergetika i ehkologiya. 2017. № 7-9 (219-221). S. 60-74.
8. Peters Roland, Deja Robert, Blum Ludgen, Pennanen Jari, Kiviaho Jari, Hakala Tuomas Analysis of solid oxide fuel cell system concepts with anode recycling// International Journal of hydrogen energy. 38(2013) pp.6809 – 6820.
9. Dvigateli vnutrennego sgoraniya. Teoriya porshnevykh i kombinirovannykh dvigatelei. Pod red. A.S. Orlina i m.G. Kruglova. M.Mashinostroenie,1983.372 s.
10. Baskakov A.P. Nagrev i okhlazhdenie metallov v kipyashchem sloe. M. Metallurgiya,1974,272 s.
11. Korovin N.A. Toplivnye ehlementy i ehlektrokhimicheskie ustanovki // M. Izd-vo MEHI. 2005. 145 c.
12. Baskakov A.P., Dubinin A.M., Tuponogov V.G. O mekhanizme parovoi gazifikatsii uglya // Promyshlennaya ehnergetika. 2008. № 4.S. 40-42.
13. Baskakov A.P., Volkova YU.V. Fiziko-khimicheskie osnovy teplovykh protsessov // M. Teplotekhnik. 2013.173 s.
14. Zhao Yingru, Sadhukhan Jhuma, Lanzini Andrea, Brandon Nigel, Shah Nilay Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid// Journal of Power Sources, Volume 196, Issue 22, 15 November 2011, P. 9516-9527.
15. Baskakov A.P., Volkova J.V., Plotnikov N.S. Optimum chemical regeneration of the gases burnt in solid oxide fuel cells // Journal of Engineering Physics and Thermophysics. 2014. – № 87(4). P. 763-778.
16. Sokolov E.YA. Teplofikatsiya i teplovye seti. M. izd. MEHI. 2001, s. 422.
17. Shcheklein S.E., Dubinin A.M. Issledovanie vliyaniya vida topliva na ehnergeticheskie pokazateli ehlektrokhimicheskogo generatora v sostave kogeneratsionnoi ustanovki//Mezhdunarodnyi nauchnyi zhur-nal Al'ternativnaya ehnergetika i ehkologiya. 2018. № 16-18 (264-266). S. 12-22.
Review
For citations:
Shcheklein S.E., Dubinin A.M. Use of hydrogen produced by the air conversion of motor diesel fuel in an electrochemical generator. Alternative Energy and Ecology (ISJAEE). 2023;(2):82-92. (In Russ.) https://doi.org/10.15518/isjaee.2023.02.082-092