

Регулирование частоты ФЭУ в электроэнергетических системах с водородным накоплением энергии
https://doi.org/10.15518/isjaee.2023.03.010-029
Аннотация
Стремительный рост внедряемых мощностей возобновляемых источников энергии, в частности фотоэлектрических установок, приводит к возникновению вызовов. Одним из наиболее актуальных вызовов становится участие фотоэлектрических установок в процессе регулирования частоты в электроэнергетических системах, в том числе в аварийных режимах. В статье предлагается для решения этой проблемы использовать алгоритм, который позволяет управлять частотой в энергосистеме с помощью блока синтетической инерции фотоэлектрической установки, в том числе при различных уровнях инсоляции и температуры фотоэлектрических панелей. Робастность предлагаемого алгоритма позволяет использовать его при различных уровнях вырабатываемой фотоэлектрической станцией мощности, а также в аварийных режимах.
Об авторах
Н. Ю. РубанРоссия
Рубан Николай Юрьевич - доцент отделения электроэнергетики и электротехники Инженерной школы энергетики
634050, Томская область, г. Томск, пр. Ленина, 30
В. Е. Рудник
Россия
Рудник Владимир Евгеньевич - ассистент отделения электроэнергетики и электротехники Инженерной школы энергетики
634050, Томская область, г. Томск, пр. Ленина, 30
А. Б. Аскаров
Россия
Аскаров Алишер Бахрамжонович - ассистент отделения электроэнергетики и электротехники Инженерной школы энергетики
634050, Томская область, г. Томск, пр. Ленина, 30
Б. Д. Малюта
Россия
Малюта Борис Дмитриевич - студент отделения электроэнергетики и электротехники Инженерной школы энергетики
634050, Томская область, г. Томск, пр. Ленина, 30
Список литературы
1. . Wu J., Yan J., Jia H., Hatziargyriou N., Djilali N., Sun H. Integrated energy systems. Applied Energy 2016; 167:155–57, https://doi.org/10.1016/j.apenergy.2016.02.075.
2. . Renewable Energy Market Update 2021 [Online]. Available: https://www.iea.org/reports/renewable-energy-marketupdate-2021 [accessed 30 March 2022].
3. . Suvorov A., Askarov A., Kievets A., Rudnik V. A comprehensive assessment of the state-of-the-art virtual synchronous generator models. Electric Power Systems Research 2022; 209:108054, https://doi.org/10.1016/j.epsr.2022.108054.
4. . Rylov A.V., Ilyushin P.V., Kulikov A.L., Suslov K.V. Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions. Energies 2021; 14:5179, https://doi.org/10.3390/en14165179.
5. . Rudnik V.E., Ufa R.A., Malkova Y.Yu., Analysis of low-frequency oscillation in power system with renewable energy sources. Energy Reports 2022; 8:394-405, https://doi.org/10.1016/j.egyr.2022.07.022.
6. . OECD. World electricity generation by source of energy: Terawatt hours (TWh). Paris: OECD Publishing; 2016. https://doi.org/10.1787/factbook-2015-en.
7. . Sinsel S.R., Riemke R.L., Hoffmann V.H. Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy 2020; 145:2271-85, https://doi.org/10.1016/j.renene.2019.06.147.
8. . National Grid, Voltage and Frequency Dependency. National Grid, 2018, [Accessed on 19-Feb-2020]. [Online]. Available: https://www.nationalgrid.com/sites/default/files/documents/SOFReport-Fr%equencyandVoltageassessment.pdf.
9. . Huang S., Schmall J., Conto J., Adams J., Zhang Y., Carter C. Voltage control challenges on weak grids with high penetration of wind generation: ERCOT experience. In: IEEE Power and Energy Society General Meeting 2012:1-7, https://doi.org/10.1109/PESGM.2012.6344713.
10. . Liu H., et al. Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks. IEEE Transactions on Power Systems 2017; 32(6):4708-20, https://doi.org/10.1109/TPWRS.2017.2682197.
11. . Cheng Yi., Azizipanah-Abarghooee R., Azizi S., Ding L., Terzija V., Smart frequency control in low inertia energy systems based on frequency response techniques: A review. Applied Energy 2020; 279:115798, https://doi.org/10.1016/j.apenergy.2020.115798.
12. . JWG C2/C4.41: Impact of High Penetration of Inverter-based Generation on System Inertia of Networks [Online]. Available: https://ecigre.org/publication/wbn022-impact-of-highpenetration-of-inverter-based-generation-on-systeminertia-of-networks [accessed 30 March 2022].
13. . Johnson S.C., Rhodes J.D., Webber M.E. Understanding the impact of nonsynchronous wind and solar generation on grid stability and identifying mitigation pathways. Applied Energy 2020; 262:114492, https://doi.org/10.1016/j.apenergy.2020.114492.
14. . Seneviratne C., Ozansoy C., Frequency response due to a large generator loss with the increasing penetration of wind/PV generation – a literature review. Renewable and Sustainable Energy Reviews 2016; 57:659–68, https://doi.org/10.1016/j.rser.2015.12.051.
15. . Arani M.F.M., El-Saadany E.F. Implementing virtual inertia in DFIG-based wind power generation. IEEE Transactions on Power Systems 2013; 28:1373–84, https://doi.org/10.1109/TPWRS.2012.2207972.
16. . Rajan R., Fernandez F., Yang Y. Primary frequency control techniques for large-scale PV-integrated power systems: A review. Renewable and Sustainable Energy Reviews 2021; 144:110998, https://doi.org/10.1016/j.rser.2021.110998.
17. . National Gird. Enhanced frequency control capability (EFCC), 2014. [Online]. Available: https://www.nationalgrideso.com/document/96486/download [accessed 30 March 2022].
18. . Azizi S., Liu G., Sun M., Terzija V., Martínez E., Vill´en M., et al. Development and tests of new protection solutions when reaching 100 % PE penetration 2020; EU H2020 MIGRATE Proj Deliv, D4.3:1-143.
19. . Yida Y., Qiao Y., Lu Z. Revolution of frequency regulation in the converter-dominated power system. Renewable and Sustainable Energy Reviews 2019; 111(C):145-56, https://doi.org/10.1016/j.rser.2019.04.066.
20. . Zhong C., Zhou Y., Yan G. Power reserve control with real-time iterative estimation for pv system participation in frequency regulation. International Journal of Electrical Power and Energy Systems 2021; 124:106367, https://doi.org/10.1016/j.ijepes.2020.106367.
21. . Nguyen H.T., Yang G., Nielsen A.H., Jensen P.H. Frequency stability enhancement for low inertia systems using synthetic inertia of wind power. IEEE Power & Energy Society General Meeting 2017; 1-5, https://doi.org/10.1109/PESGM.2017.8274566.
22. . Tamrakar U., Shrestha D., Maharjan M., Bhattarai B.P., Hansen T.M., Tonkoski R. Virtual Inertia: Current Trends and Future Directions. Applied Sciences 2017; 7(7):654, https://doi.org/10.3390/app7070654.
23. . Zhang Z.-S., Sun Y.-Z., Lin J., Li G.-J. Coordinated frequency regulation by doubly fed induction generator-based wind power plants. Renewable Power Generation IET 2012; 6:38-47, https://doi.org/10.1049/ietrpg.2010.0208.
24. . Zhang S., Jiao L., Zhang H., Shi L., Yang H. A New Control Strategy of Active Participation in Frequency Regulation of Photovoltaic System. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2); 2314-18, https://doi.org/10.1109/EI250167.2020.9347015.
25. . Crăciun B., Kerekes T., Séra D., Teodorescu R. Frequency Support Functions in Large PV Power Plants With Active Power Reserves. IEEE Journal of Emerging and Selected Topics in Power Electronics 2014; 2(4):849-58, https://doi.org/10.1109/JESTPE.2014.2344176.
26. . Omran W., Kazerani M., Salama M. Investigation of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems. IEEE Transactions on Energy Conversion 2011; 26(1):318–27, https://doi.org/10.1109/TEC.2010.2062515.
27. . Rajan R., Fernandez F.M. Power control strategy of photovoltaic plants for frequency regulation in a hybrid power system. International Journal of Electrical Power and Energy Systems 2019; 110:171-83 https://doi.org/10.1016/j.ijepes.2019.03.009.
28. . Trifkovic M., Sheikhzadeh M., Nigim K., Daoutidis P. Modeling and Control of a Renewable Hybrid Energy System With Hydrogen Storage. IEEE Transactions on Control Systems Technology 2014; 22(1):169-79, https://doi.org/10.1109/TCST.2013.2248156.
29. . El-Taweel N.A., Khani H., Farag H.E.Z. Hydrogen storage optimal scheduling for fuel supply and capacity-based demand response program under dynamic hydrogen pricing. IEEE Trans. Smart Grid 2019; 10(4):4531-42, https://doi.org/10.1109/TSG.2018.2863247.
30. . Abomazid A.M., El-Taweel N.A., Farag H.E. Z. Optimal Energy Management of Hydrogen Energy Facility Using Integrated Battery Energy Storage and Solar Photovoltaic Systems. IEEE Transactions on Sustainable Energy 2022; 13(3):1457-68, https://doi.org/10.1109/TSTE.2022.3161891.
31. . Renewable Power Generation Costs in 2019. In: Renewable Power Generation Costs in 2019, Abu Dhabi, UAE:Int. Renewable Energy Agency, Sep. 2020.
32. . Shibata Y. Economic analysis of hydrogen production from variable renewables. IEEJ Energy J. 2015; 10(2):26-46.
33. . Bajpai P., Dash V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sust. Energ. Rev. 2012; 16(5):2926-39, https://doi.org/10.1016/j.rser.2012.02.009.
34. . Trifkovic M., Sheikhzadeh M., Nigim K., Daoutidis P. Modeling and Control of a Renewable Hybrid Energy System With Hydrogen Storage. IEEE Transactions on Control Systems Technology 2014; 22(1):169-79, https://doi.org/10.1109/TCST.2013.2248156.
35. . Chen Y., Hesse R., Turschner D., Beck H. Improving the grid power quality using virtual synchronous machines. In: 2011 International Conference on Power Engineering, Energy and Electrical Drives, 1–6, https://doi.org/10.1109/PowerEng.2011.6036498.
36. . Sakimoto K., Miura Y., Ise T. Stabilization of a power system with a distributed generator by a Virtual Synchronous Generator function. In: Proceedings of the 8th International Conference on Power Electronics (ECCE Asia) 2011, Jeju, Korea; 1498–1505.
37. . Katiraei F., Iravani M.R. Power Management Strategies for a Microgrid With Multiple Distributed Generation Units. IEEE Transactions on Power Systems 2006; 21:1821–31, https://doi.org/10.1109/TPWRS.2006.879260.
38. . Eriksson R., Modig N., Elkington K. Synthetic inertia versus fast frequency response: A definition. IET Renewable Power Generation 2018; 12:507–14, https://doi.org/10.1049/iet-rpg.2017.0370.
39. . Dreidy M., Mokhlis H., Mekhilef S. Inertia response and frequency control techniques for renewable energy sources: A review. Renewable and Sustainable Energy Reviews 2017, 69, https://doi.org/10.1016/j.rser.2016.11.170.
40. . Bevrani H., Ise T., Miura Y. Virtual synchronous generators: A survey and new perspectives. International Journal of Electrical Power and Energy Systems 2014; 54:244-54, https://doi.org/10.1016/j.ijepes.2013.07.009.
41. . D´ıaz-Gonz´alez F., Hau M., Sumper A., Gomis-Bellmunt O. Participation of wind power plants in system frequency control: Review of grid code requirements and control methods. Renewable and Sustainable Energy Reviews 2014;34:551–64, https://doi.org/10.1016/j.rser.2014.03.040.
42. . Shi Q., Wang G., Ma W., Fu L., Wu Y., Xing P. Coordinated Virtual Inertia Control Strategy for DPMSG Considering Frequency Regulation Ability. Journal of Electrical Engineering and Technology 2016; 11(6):1556-70, http://dx.doi.org/10.5370/JEET.2016.11.6.1556.
43. . Zarina P.P., Mishra S., Sekhar P.C. Exploring frequency control capability of a PV system in a hybrid PV-rotating machine-without storage system. International Journal of Electrical Power and Energy Systems 2014; 60:258–67, http://dx.doi.org/10.1016/j.ijepes.2014.02.033.
44. . Amber K.P., Akram W., Bashir M.A., Khan M.S., Kousar A. Experimental performance analysis of two different passive cooling techniques for solar photovoltaic installations. Journal of Thermal Analysis and Calorimetry 2021; 143(3):2355-66, https://doi.org/10.1007/s10973-020-09883-6.
45. . Solar Photovoltaic Power Plant Modeling and Validation Guideline. MVWG. December 9, 2019. [Online]. Available: https://www.wecc.org/Reliability/Solar%20PV%20Plant%20Modeling%20and%20Validation%20Guidline.pdf [accessed 30 March 2022].
46. . Karami N., Moubayed N., Outbib R. General review and classification of different MPPT techniques. Renewable and Sustainable Energy Reviews 2017; 68:1–18, https://doi.org/10.1016/j.rser.2016.09.132.
47. . Conroy J.F., Watson R. Frequency Response Capability of Full Converter Wind Turbine Generators in Comparison to Conventional Generation. IEEE Transactions on Power Systems 2008; 23(2):649-56, https://doi.org/10.1109/TPWRS.2008.920197.
48. . Nguyen, Ha Thi et al. Combination of Synchronous Condenser and Synthetic Inertia for Frequency Stability Enhancement in Low-Inertia Systems. IEEE Transactions on Sustainable Energy 2019; 10:997-1005, https://doi.org/10.1109/TSTE.2018.2856938.
49. Gusev A.L, Jabbarov T.G., Mamedov Sh.G., Rauf Malikov , Hajibalaev N.M., Abdullaeva S.D., Abbasov N.M. Production of hydrogen and carbon in the petrochemical industry by cracking of hydrocarbons in the process of heat utilization in steel production.//International Journal of Hydrogen Energy, 2023, In Press.
Рецензия
Для цитирования:
Рубан Н.Ю., Рудник В.Е., Аскаров А.Б., Малюта Б.Д. Регулирование частоты ФЭУ в электроэнергетических системах с водородным накоплением энергии. Альтернативная энергетика и экология (ISJAEE). 2023;(3):10-29. https://doi.org/10.15518/isjaee.2023.03.010-029
For citation:
Ruban N., Rudnik V., Askarov A., Maliuta B. Frequency control by the PV station in electric power systems with hydrogen energy storage. Alternative Energy and Ecology (ISJAEE). 2023;(3):10-29. (In Russ.) https://doi.org/10.15518/isjaee.2023.03.010-029