

Assessment of the systemic efficiency of an NPP base load supply based on combination with hydrogen technologies
https://doi.org/10.15518/isjaee.2023.04.049-067
Abstract
The article presents a comparative analysis of effectiveness of the approaches developed by the authors to ensuring a further development of nuclear energy industry as a pollution-free energy source. To solve this problem, several options for using environmentally friendly hydrogen fuel were considered to ensure a high installed power factor of NPPs and/or maneuverability of existing and planned double-loop NPPs with a water coolant. It is proposed to accumulate off-peak electricity by means of water electrolysis to obtain hydrogen and oxygen, which ensures the basic operation mode of NPP and provides a possibility to use hydrogen/oxygen to produce peak electricity. The given approach is compared with the basic scheme of marketable hydrogen and oxygen production including their additional purification. The economic feasibility is estimated with account for the effect from replacement of environmentally harmful plants based on gas turbine units, including the effect of preventing forced unloading of NPPs and various options to the target prices for nuclear and hydrocarbon fuel. As a result, the main technical and economic indicators of the proposed approaches were determined, including the cost and accumulated net present value. Based on the assessments made, it is shown that the options for providing NPPs with a basic electrical load based on the proposed approaches are efficient and competitive. Production of hydrogen and oxygen with a subsequent production of peak electricity, i.e. the use of a hydrogen power complex as an off-peak energy storage allows achieving the maximum economic effect. The provided estimates show the relevance and prospects for solving the problem of providing NPPs with a baseline electrical load under conditions of increasing their share in the energy grid based on the combination with a hydrogen power complex.
About the Authors
R. Z. AminovRussian Federation
Aminov Rashid Zarifovich - Department of Energy Problems of SSC RAS, head, PhD
st. Rabochaya 24, Saratov, Russia, 410028
tel. (845-2) 27-14-36, fax (845-2) 27-14-36
A. N. Egorov
Russian Federation
Egorov Alexander Nikolaevich - Department of Energy Problems of SSC RAS, senior researcher, Candidate of technical science
st. Rabochaya 24, Saratov, Russia, 410028
tel. (845-2) 27-14-36, fax (845-2) 27-14-36
A. N. Bairamov
Russian Federation
Bairamov Artem Nicolaevich - Department of Energy Problems of SSC RAS, senior researcher, PhD
st. Rabochaya 24, Saratov, Russia, 410028
tel. (845-2) 27-14-36, fax (845-2) 27-14-36
References
1. Ehnergeticheskaya strategiya Rossii na period do 2035g. / Pravitel'stvo Rossiiskoi federatsii. M.: 2020, 79s.
2. Golovin R.A. Strategiya deyatel'nosti Goskorporatsii «RosatoM». M.: 2018.
3. Naterer G., Fowler M., Cotton J., Gabriel K. Syn-ergistic roles of off-peak electrolysis and thermochemical production of hydrogen from nuclear energy in Can-ada // International Journal of Hydrogen Energy. 2008. V. 33. I. 23. pp. 6849-6857.
4. Antony A., Maheshwari N.K., Rama R.A. A generic methodology to evaluate economics of hydrogen production using energy from nuclear power plants // Int J Hydrogen Energ. 2017. V. 42(41). pp. 25813-25823.
5. Sorgulu F., Dincer I. Cost evaluation of two potential nuclear power plants for hydrogen production // Int J Hydrogen Energ. 2018. №43 (23). S.10522-10529.
6. Bairamov A.N., Kirichkov V.S. Obosnovanie komponovochnykh reshenii kombinirovaniya AEHS s vodorodnym ehnergeticheskim kompleksom po kriteriyu minimal'nogo riska // Trudy Akademehnergo. 2018. №1. S.57-71.
7. Kulikov S. Pervyi khochet stat' glavnym // Ehkspert. 2019. № 48 (1143). [Ehlektronnyi resurs]. Rezhim dostupa: https://expert.ru/expert/2019/48/pervyij-hochetstat-glavnyim/.
8. Blanquet E., Williams P.T. Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: Influence of biomass components and catalyst properties // Journal of Analytical and Applied Pyrolysis. 2021. V. 159. 105325.
9. Ogrel' L.D. Sravnenie mirovogo i rossiiskogo rynkov vodoroda // Gasworld. 2014. №34. S.20-23.
10. Stolyarevskii A.Y. Production of alternative fuel on the basis of nuclear power sources // Russ J Gen Chem. 2009. V. 79. pp. 2520-2525.
11. Makroehkonomicheskii obzor: «Vodorodnaya ehkonomikA» – perspektivy perekhoda k al'ternativnym ehnergonositelyam i vozmozhnosti ehksporta dlya Rossii. – Tsentr ehkonomicheskogo prognozirovaniya Gazprombanka, 2019g. – Rezhim dostupa: https://investvitrina.ru/articles/makroekonomicheskiiobzor-vodorodnaya-ekonomika-perspektivy-perehoda-kalternativnym-energonositelyam-i-vozmozhnostieksporta-dlya-rossii/.
12. Mirnyi M. “Promyshlennye gazy 2017”: itogi konferentsii, vyvody ehkspertov. – Rezhim dostupa: https://mplast.by/novosti/2017-06-19-promyishlennyiegazyi-2017-itogi-konferentsii-vyivodyi-ekspertov/.
13. Oi T., Wada K. Feasibility study on hydrogen refueling infrastructure for fuel cell vehicles using the off-peak power in Japan // Int J Hydrogen Energ. 2004. V. 29(4). pp. 347-354.
14. Yildiz B., Kazimi M.S. Efficiency of hydrogen production systems using alternative nuclear energy technologies // Int J Hydrogen Energ. 2006. V. 31(1). pp. 77-92.
15. Kılkış Ş., Krajačić G., Duić N., Rosen M.A., Al-Nimr Moh'd A. Accelerating mitigation of climate change with sustainable development of energy, water and environment systems // Energ Convers Manage. 2021. V. 245. pp. 114606.
16. Li Y., Chen D.W., Liu M., Wanga R.Z. Life cycle cost and sensitivity analysis of a hydrogen system using low-price electricity in China // International Journal of Hydrogen Energy. 2017. V. 42. I. 4. PP.1899-1911.
17. Li J., Zhu X., Djilali N., Yang Y., Ye D., Chen R., Liao Q. Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy // Renew Sust Energ Rev. 2022. V. 169. pp. 112935.
18. Perspektivy Rossii na global'nom rynke vodorodnogo topliva / Ehkspertno-analiticheskii otchet pod red. direktora Infrastrukturnogo tsen-tra EnergyNet Kholkina D. M.: 2019, 30s.
19. Mitrova T., Mel'nikov YU., Chugunov D. Vodorodnaya ehkonomika – put' k nizkouglerodnomu razvitiyu. Skolkovo: Moskovskaya shkola upravleniya. 2019, 62s.
20. Nami H., Rizvandi O.B., Chatzichristodoulou C., Hendriksen P.V., Frandsen H.L. Techno-economic analysis of current and emerging electrolysis technologies for green hydrogen production // Energ Convers Manage. 2022. V. 269. pp. 116162.
21. Zhao G., Kraglund M.R., Frandsen H.L., Wulff A.C., Jensen S.H., Chen M., Graves C.R. Life cycle assessment of H2O electrolysis technologies // Int J Hydrogen Energ. 2020. V. 45(43). pp. 23765-23781.
22. Patent No. 2427048. Russian Federation. Aminov R.Z., Bairamov A.N. Hydrogen combustion system for steam-hydrogen superheating of fresh steam in the cycle of a nuclear power plant [Sistema szhiganiya vodoroda dlya parovodorodnogo peregreva svezhego para v tsikle atomnoy elektricheskoy stantsii]. 2011.
23. Aminov R.Z., Egorov A.N. Study of Hydrogen Combustion in an Oxygen Environment // High Temperature. 2018. V. 56. I. 5. pp. 744-750.
24. Aminov R.Z., Schastlivtsev, Bairamov A.N. Ehksperimental'naya otsenka doli neproreagirovavshego vodoroda pri szhiganii v srede kisloroda // Mezhdunarodnyi nauchnyi zhurnal Al'ternativnaya ehnergetika i ehkologiya. 2020. № 7-18 (330-341). S. 68-79.
25. Aminov R.Z., Schastlivtsev A.I., Bayramov A.N. Experimental Evaluation of the Composition of the Steam Generated during Hydrogen Combustion in Oxygen // High Temperature. 2020. V. 58. No. 3. pp. 410-416.
26. Egorov A.N. Efficiency of off-peak electricity conversion at nuclear power plants using reversible fuel cells // J. Phys.: Conf. Ser. 2021 V. 2096. 012193.
27. Patent RF № 2640409. Sposob povysheniya manevrennosti i bezopasnosti AEHS na osnove teplovogo i khimicheskogo akkumulirovaniya / Yurin V.E., Egorov A.N. // Zayavka na patent RF №2017106398 ot 27.02.2017, opubl. 9.01.2018. Byul. № 1.
28. Aminov, R.Z., Egorov, A.N., Yurin, V.E. et al. Multifunctional Backup for NPP Internal Needs // Atomic Energy. 2017. V. 121(5). pp. 327-333.
29. Aminov R.Z., Yurin V.E., Egorov A.N. A comprehensive analysis of emergency power supply systems at NPPs with WWER-1000 type reactors based on additional steam turbines in the context of Balakovo NPP // Journal of Physics: Conference Series. 2018. V. 1111. pp. 021026.
30. Aminov R.Z., Egorov A.N. Comparison and analysis of residual heat removal systems of reactors in station blackout accidents // Atomic Energy. 2017. V. 121. № 6. pp. 402-408.
31. Radchenko R. V., Mokrushin A. S., Tyul'pa V. V. Vodorod v ehnergetike: uchebnoe posobie. Ekaterinburg: izdatel'stvo Ural'skogo universiteta, 2014. 230s.
32. Slovetskii D. Sverkhchistyi vodorod // The Chemical Journal. 2010. S.33-35.
33. Weimin Z., Chunsheng Z. Massovoe akkumulirovanie ehnergii // Water Power & Dam Construction. 2006. №10. C. 24.
34. Water Power and Dam Construction. Rezhim dostupa: http://www.waterpowermagazine.com.
35. Assessment of the performance of a nuclear–hydrogen power generation system // Therm Eng. 2019. V. 66(3). pp. 196-209.
36. Aminov R.Z., Shkret A.F., Garievskii M.V. Thermal and nuclear power plants: competitiveness in the new economic conditions // Thermal Engineering. 2017. V. 64. I. 5. pp. 319-328.
37. Makarov A.A., Veselov F.V., Makarova A.S., Novikova T.V., Pankrushina T.G. Strategic prospects of the electric power industry of russia // Thermal Engineer-ing. 2017. V. 64. I. 11. pp. 817-828.
38. Aminov R.Z., Garievskii M.V. Evaluation of NPP Efficiency Using Phase-Transition Batteries // Thermal power engineering. 2023. V. 2. pp. 78-89.
39. Wei M., Levis G., Mayyas A. Reversible fuel cell cost analysis. US: Department of Energy's Fuel Cell Technologies Office. 2020.
40. Mayyas A. Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes // Energy. 2022. V. 239(Part A). pp. 121941.
41. Chadly A. Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings // Energy. 2022. V. 247. pp. 123466.
42. Kiwan S., Al-Nimr Moh'd, Radaideh M.I., Investigation of a new hybrid fuel cell–ThermoElectric generator–absorption chiller system for combined power and cooling // Int J Refrig. 2020. V. 113. pp. 103-114.
43. Assia C. et al. Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings // Energy. 2022. V. 247. pp. 123466.
44. Lamagna M. et al. Techno-economic assessment of reversible Solid Oxide Cell integration to renewable energy systems at building and district scale // Energ Convers Manage. 2021. V. 235. pp. 113993.
45. ZAO «Nauchno-tekhnicheskoe agentstvo «NaukA» (NTA «NaukA»). Rezhim dostupa: https://nauca.ru/content/catalog/equipment_vera_oxygen.xml.
Review
For citations:
Aminov R.Z., Egorov A.N., Bairamov A.N. Assessment of the systemic efficiency of an NPP base load supply based on combination with hydrogen technologies. Alternative Energy and Ecology (ISJAEE). 2023;(4):49-67. (In Russ.) https://doi.org/10.15518/isjaee.2023.04.049-067