Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Electrochemical generator based on solid oxide fuel cell and hydrogen aluminum reactor for hydrogen production

https://doi.org/10.15518/isjaee.2023.04.103-112

Abstract

A cogeneration power plant based on a solid oxide fuel cell with an aluminum-hydrogen reactor in which hydrogen is obtained from aluminum and water in the presence of alkali is described. The efficiency of such a reactor is 43.7%. The fuel utilization rate at a power plant with an electric capacity of 10 kW is 42.3%. The electrical efficiency of the fuel cell is 77.2%, the proportion of hydrogen oxidized in the anode is 80.5%. The specific consumption of conventional fuel for the production of electric energy is 0.283 kg. t., and for the production of thermal energy 78.7 kg.t./ GJ.
Specific indicators are higher compared to similar indicators for cogeneration power plants running on hydrocarbon fuel, but less than in the Russian energy system – 0.33 kg cubic tons/ kWh.

About the Authors

S. E. Shcheklein
Ural Federal University named after the First President of Russia B. N. Yeltsin
Russian Federation

Sergey E. Shcheklein -  Doctor of technical science, professor, head of Atomic Stations and Renewable Energy Sources Department 

Ekaterinburg 



A. M. Dubinin
Ural Federal University named after the First President of Russia B. N. Yeltsin
Russian Federation

Alexey M. Dubinin -  Doctor of Technical Sciences, Professor at the Department of Nuclear Stations and Renewable Energy Sources 

Ekaterinburg 



O. V. Baranova
Ural Federal University named after the First President of Russia B. N. Yeltsin
Russian Federation

Olga Baranova -  Undergraduate student of the Department of Nuclear Power Plants and Renewable Energy Sources 

 Ekaterinburg 



References

1. Shkol'nikov E. I. Alyumovodorodnye istochniki toka dlya portativnykh ehlektricheskikh ustroistv / Shkol'nikov E. I. // Sovremennaya ehlektronika. 2014. N6. s. 26-29.

2. Poleznaya model' N 103574 RF MPK F01D1/32. Sposob polucheniya mekhanicheskoi ehnergii v turbine, turbina i segnerovo koleso dlya ego realizatsii/V.I. Sychnikov, S.A. Danchenko, A.U. Sembiev, G.A. Kozyrev/ Potentoobladatel' ZAO «RTTS-sistemy vtorichnogo ehnergopitaniYA» zayavl. 29.12.04; opubl. 20.07.2006. Byul. 2016.-4 s.: il.

3. Arkhipova N.V. Fizicheskaya khimiya: uchebnoe posobie/ N.V. Arkhipova, A.I. Varakin, V.V. Efano-va, V.V. Simakov. Saratov: Sarat. gos. ten. un-t, 2009. 160 s.

4. Patent N 2510876 RF MPK S01B3/08. Avtonomnyi generator vodoroda / V.K. Milinchuk, B.M. Roshchektaev / zayavl. 19.04.12; opubl. 10.04.2014. Byul. 2014. N10. -3 s.: il.

5. Terent'eva T.V. Analiz alyumovodorodnoi ehnergetiki s tochki zreniya ehnergoemkosti/ T.V. Terent'eva, E.V. Starikov// materialy Vserossiiskoi nauchno-prakticheskoi konferentsii studentov, aspirantov i molodykh uchenykh Ehnergo- i resursosbere-zhenie. Ehnergosberezhenie. Netraditsionnye i vozobnovlyaemye istochniki ehnergii/ pod obshch. red. N.I. Danilova: v 2 t. – Ekaterinburg: URFU. 2017-T.1.280 s.

6. Korovin N. A. Toplivnye ehlementy i ehlektrokhimicheskie ustanovki/ N.A. Korovin. – M.: Izd-vo MEHI, 2005. - 145 s.

7. KH. M. Karapet'yants. Khimicheskaya termodinamika. – M.: Khimiya, 1975.

8. KH. M. Karapet'yants, M. L. Karapet'yants. Osnovnye termodinamicheskie konstanty neorganicheskikh i organicheskikh veshchestv. – M.: Khimiya, 1968. - 470 s.

9. Munts V.A., Volkova YU.V., Plotnikov N.S., Dubinin A.M., Tuponogov V.G., Chernyshov V.A. Issledovanie kharakteristik ehnergeticheskoi ustanovki 5 KVt na tverdooksidnykh toplivnykh ehlementakh s parovym riformingom prirodnogo gaza// Teploehnergetika. 2015. N11. c. 15-20.

10. Baskakov A.P., Volkova YU.V. Fizikokhimicheskie osnovy teplovykh protsessov. M.: «TeplotekhniK». - 2013. - 173 s.

11. Tekhnicheskaya termodinamika: uchebnoe posobie/ V.N. Korolev, E.M. Tolmachev. Ekaterinburg: UGTU-UPI, 2001. 180 s.

12. Baskalov V. D., Volkova J.V., Plotnikov N. S. Optimum chemical regeneration of the gases burnt in solid oxide fuel cells// Jornal of Engineering Physics and Thermophysics/ 2014. – N87 (4). P.793-778.

13. Yakovlev B.V. Povyshenii ehffektivnosti sistemy teplofikatsii i teplosnabzheniya/ Yakovlev B.V. – M.: Novosti teplosnabzheniya, 2008. – 448 s.

14. A.M. Dubinin, S.E. Shcheklein, V.G. Tuponogov, M.I. Ershov. Mini TEHTS na baze ehlektrokhimicheskogo generatora i konvertora metana s zatormozhennym psevdoozhizhennym sloem. Mezhdunarodnyi nauchnyi zhurnal «Al'ternativnaya ehnergetika i ehkologiYA» N19-21 (231-233). 2017.

15. A.M. Dubinin, S.E. Shcheklein. Miniteploehlektrotsentral' na osnove reaktora dlya vozdushnoi konversii metana i ehlektrokhimicheskogo generatora. Teoreticheskie osnovy khimicheskoi tekhnologii. 2019, tom 53 N1 c.78-86.


Review

For citations:


Shcheklein S.E., Dubinin A.M., Baranova O.V. Electrochemical generator based on solid oxide fuel cell and hydrogen aluminum reactor for hydrogen production. Alternative Energy and Ecology (ISJAEE). 2023;(4):103-112. (In Russ.) https://doi.org/10.15518/isjaee.2023.04.103-112

Views: 563


ISSN 1608-8298 (Print)