Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis, structure and thermoelectric properties of holmium-doped nanomaterials based on bismuth telluride

https://doi.org/10.15518/isjaee.2023.05.021-031

Abstract

Powdered thermoelectric materials Bi2-xHoxTe2.7Se0.3 (x = 0; 0.001; 0.0025; 0.005) were obtained by the method of solvothermal synthesis. The possibility of obtaining nanomaterials based on holmium-doped bismuth telluride is shown. The influence of holmium concentration on the parameters of the crystal lattice, morphology and average size of the synthesized particles were studied. Bulk materials Bi2-xHoxTe2.7Se0.3 were obtained by spark plasma sintering. All obtained samples were textured, the crystallographic axis of the texture (0 0 l) is directed parallel to the direction of pressure application during compaction. The development of the texture is confirmed by scanning electron microscopy and XRD analysis. The grains in the textured samples form an ordered lamellar structure, and the lamellar sheets lie in a plane perpendicular to the direction of pressing. An increase in the concentration of holmium leads to an increase in the degree of texturing. The thermoelectric properties of bulk materials Bi2-xHoxTe2.7Se0.3.

About the Authors

M. N. Yapryntsev
Belgorod National Research University
Russian Federation

Maksim Yapryntsev - Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Materials Science and Nanotechnology

ul. Pobedy, d. 85, g. Belgorod, 308015



O. N. Ivanov
Belgorod National Research University
Russian Federation

Oleg Ivanov - Doctor of Physical and Mathematical Sciences, Professor
of the Department of Materials Science and Nanotechnology

ul. Pobedy, d. 85, g. Belgorod, 308015



References

1. . Bell L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems //Science. – 2008. – T. 321. – №. 5895. – S. 1457-1461. DOI: 10.1126/science.1158899.

2. . Xu T. et al. High Power Factor and Thermoelec-tric Figure of Merit in Sb2Si2Te6 through Synergetic Ef-fect of Ca Doping //Chemistry of Materials. – 2021. – T. 33. – №. 20. – S. 8097-8105. DOI: 10.1021/acs.chemmater.1c02895.

3. . Ghosh T . et al. High-performance thermoelectric energy conversion: A tale of atomic ordering in agsbte2 //ACS Energy Letters. – 2021. – T. 6. – №. 8. – S. 2825-2837. DOI: 10.1021/acsenergylett.1c01184.

4. . Parashchuk T. et al. High thermoelectric performance of p-type PbTe enabled by the synergy of resonance scattering and lattice softening //ACS Applied Materials & Interfaces. – 2021. – T. 13. – №. 41. – S. 49027-49042. DOI: 10.1021/acsami.1c14236.

5. . Chandra S ., Dutta P ., Biswas K . High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures //ACS nano. – 2021. – T. 16. – №. 1. – S. 7-14. DOI: 10.1021/acsnano.1c10584.

6. . Yaprintsev M., Vasil’ev A., Ivanov O. Thermoe-lectric properties of the textured Bi1.9Gd0.1Te3 com-pounds spark-plasma-sintered at various temperatures //Journal of the European Ceramic Society. – 2020. – T. 40. – №. 3. – S. 742-750. DOI: 10.1016/j.jeurceramsoc.2019.11.028.

7. . Li S. et al. Rare Earth Element Doping Introduces Pores to Improve Thermoelectric Properties of p-Type Bi0.46Sb1.54Te3 //ACS Applied Energy Materials. – 2021. – T. 4. – №. 9. – S. 9751-9757. DOI: 10.1021/acsaem.1c01830.

8. . Wu F. et al. Thermoelectric properties of rare earth-doped n-type Bi2Se0.3Te2.7 nanocomposites //Bulletin of Materials Science. – 2014. – T. 37. – S. 1007-1012. DOI: 10.1007/s12034-014-0038-x.

9. . Yaprintsev M., Vasil’ev A., Ivanov O. Sintering temperature effect on thermoelectric properties and microstructure of the grained Bi1.9Gd0.1Te3 compound //Journal of the European Ceramic Society. – 2019. – T. 39. – №. 4. – S. 1193-1205. DOI: 10.1016/j.jeurceramsoc.2018.12.041.

10. . Ansermet J. P., Brechet S. D. Magnetic contribu-tion to the Seebeck effect //Entropy. – 2018. – T. 20. – №. 12. – S. 912. DOI: 10.3390/e20120912.

11. . Ivanov O., Yaprintsev M. Mechanisms of thermoelectric efficiency enhancement in Lu-doped Bi2Te3 //Materials Research Express. – 2018. – T. 5. – №. 1. – S. 015905. DOI: 10.1088/2053-1591/aaa265.

12. . Li Z. et al. Defect chemistry for thermoelectric materials //Journal of the American Chemical Society. – 2016. – T. 138. – №. 45. – S. 14810-14819. DOI: 10.1021/jacs.6b08748.

13. . Vasil'ev A. et al. Anisotropic thermoelectric properties of Bi1.9Lu0.1Te2.7Se0.3 textured via spark plas-ma sintering //Solid State Sciences. – 2018. – T. 84. – S. 28-43. DOI: 10.1016/j.solidstatesciences.2018.08.004.

14. . Zhang G. et al. Solvothermal synthesis of V−VI binary and ternary hexagonal platelets: the oriented attachment mechanism //Crystal Growth and Design. – 2009. – T. 9. – №. 1. – S. 145-150. DOI: 10.1021/cg7012528.

15. . Wang W. et al. High-yield synthesis of singlecrystalline antimony telluride hexagonal nanoplates using a solvothermal approach //Journal of the Ameri-can Chemical Society. – 2005. – T. 127. – №. 40. – S. 13792-13793. DOI: 10.1021/ja054861p.

16. . Min Y. et al. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties //ACS nano. – 2015. – T. 9. – №. 7. – S. 6843-6853. DOI: 10.1021/nn507250r.

17. . Yaprintsev M. et al. Interconnected effects of Sm-doping on grain structure and transport properties of the textured Bi2-xSmxTe2.7Se0.3 compounds //Journal of Solid State Chemistry. – 2022. – T. 312. – S. 123176. DOI: 10.1016/j.jssc.2022.123176.

18. . Yaprintsev M., Vasil’ev A., Ivanov O. Preparation and characterization of nonstoichiometric Tedeficient and Te-rich thermoelectric Bi2-xGdxTe3±y com-pounds //Journal of Alloys and Compounds. – 2022. – T. 900. – S. 163516. DOI: 10.1016/j.jallcom.2021.163516.

19. . Yaprintsev M. et al. Effect of Sm-doping on microstructure and thermoelectric properties of textured n-type Bi2Te2.7Se0.3 compound due to change in ionic bonding fraction //Journal of Solid State Chemistry. – 2021. – T. 297. – S. 122047. DOI: 10.1016/j.jssc.2021.122047.

20. . Yaprintsev M., Ivanov O., Vasil'ev A. Interconnected effects of direct Gd doping and accompanying indirect Te-stoichiometry destroying on the thermoelectric properties of Te-rich Bi2-xGdxTe3+y compounds //Journal of Solid State Chemistry. – 2022. – T. 308. – S. 122945. DOI: 10.1016/j.jssc.2022.122945.

21. . Ivanov O., Yaprintsev M., Vasil’ev A. Anisotropy of the grain size effect on the electrical resistivity of n-type Bi1.9Gd0.1Te3 thermoelectric textured by spark plasma sintering //Journal of the European Ceramic Society. – 2020. – T. 40. – №. 9. – S. 3431-3436. DOI: 10.1016/j.jeurceramsoc.2020.03.048.

22. . Ivanov O., Yaprintsev M., Vasil’ev A. Comparative analysis of the thermoelectric properties of the non-textured and textured Bi1.9Gd0.1Te3 compounds //Journal of Solid State Chemistry. – 2020. – T. 290. – S. 121559. DOI: 10.1016/j.jssc.2020.121559.

23. . Wu F., Shi W., Hu X. Preparation and thermoelectric properties of flower-like nanoparticles of Ce- Doped Bi2Te3 //Electronic Materials Letters. – 2015. – T. 11. – S. 127-132. DOI: 10.1007/s13391-014-4139-x.

24. . Yaprintsev M. et al. Effects of Lu and Tm Doping on Thermoelectric Properties of Bi2Te3 Compound //Journal of Electronic Materials. – 2018. – T. 47. – S. 1362-1370. DOI: 10.1007/s11664-017-5940-8.

25. . Yang J. et al. Thermoelectrical properties of lutetium-doped Bi2Te3 bulk samples prepared from flower- like nanopowders //Journal of Alloys and Compounds. – 2015. – T. 619. – S. 401-405. DOI: 10.1016/j.jallcom.2014.09.024.

26. . Ji X. H. et al. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys //Journal of alloys and compounds. – 2005. – T. 387. – №. 1-2. – S. 282-286. DOI: 10.1016/j.jallcom.2004.06.047.

27. . Zhou C., Li L. Electronic structures and thermoelectric properties of La or Ce-doped Bi2Te3 alloys from first principles calculations //Journal of Physics and Chemistry of Solids. – 2015. – T. 85. – S. 239-244. DOI: 10.1016/j.jpcs.2015.05.021.

28. . Kim H. S. et al. Characterization of Lorenz number with Seebeck coefficient measurement //APL materials. – 2015. – T. 3. – №. 4. – S. 041506. DOI: 10.1063/1.4908244.

29. . Lukas K . C . et al. Transport properties of Ni, Co, Fe, Mn doped Cu0.01Bi2Te2.7Se0.3 for thermoelectric device applications //Journal of Applied Physics. – 2012. – T. 112. – №. 5. – S. 054509. DOI: 10.1063/1.4749806.

30. . Wang S. et al. Conductivity-limiting bipolar thermal conductivity in semiconductors //Scientific reports. – 2015. – T. 5. – №. 1. – S. 1-9. DOI: 10.1038/srep10136.


Review

For citations:


Yapryntsev M.N., Ivanov O.N. Synthesis, structure and thermoelectric properties of holmium-doped nanomaterials based on bismuth telluride. Alternative Energy and Ecology (ISJAEE). 2023;(5):21-31. (In Russ.) https://doi.org/10.15518/isjaee.2023.05.021-031

Views: 178


ISSN 1608-8298 (Print)