Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Air conversion of pyrolysis products of hydrocarbon raw materials into synthesis gas (H2+CO) for the production of electrical energy using solid oxide fuel cells

https://doi.org/10.15518/isjaee.2023.05.045-058

Abstract

The article deals with the technology of combined production of electric and thermal energy using the preliminary air conversion of pyrolysis liquid of automobile tires into synthesis gas, followed by its supply to the battery of an electrochemical generator. The electric power of the installation is 100 kW, the mains heater is 126 kW. Methods of physicochemical modeling and compilation of energy balances are used to determine the main energy characteristics of the installation. It is shown that the specific consumption of pyrolysis liquid for the production of electrical energy is 108 g / kWh (169 g of fuel equivalent / (kW ∙ h)), and the heat consumption is 30 kg / GJ (196 kg of fuel equivalent / Gcal). The fuel utilization rate is 46.4%.
The specific consumption of natural and equivalent fuel of this unit is slightly higher than the specific fuel consumption at power plants operating on hydrocarbon natural fuels, but at the same time, significantly lower than that of autonomous diesel-electric power plants.
Recommendations on the use of pyrolysis liquid for the generation of electrical and thermal energy using a hightemperature fuel cell based on SOFC are given.

About the Authors

S. E. Shcheklein
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Sergey E. Shcheklein - Doctor of technical science, professor

Yekaterinburg



A. M. Dubinin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Alexey M. Dubinin - Professor of the Department of Heat Power Engineering and Heat Engineering

Yekaterinburg



A. V. Matveev
Ural Federal University named after the first President of Russia B.N. Yeltsin; “NPP Dinamika” OOO
Russian Federation

Andrei V. Matveev - Associate Professor of the Department of Nuclear Power Plants and Renewable Energy Sources, Candidate of Technical Sciences

Yekaterinburg



V. A. Filippenkov
“NPP Dinamika” OOO
Russian Federation

Vjacheslav A. Filippenkov - Director

Yekaterinburg



Mohammed A. Qasim
Ural Federal University named after the first President of Russia B.N. Yeltsin; Department of Projects and Engineering Services, Ministry of Health
Russian Federation

Qasim Mohammed Abdulhalik Qasim - Research Engineer of the Department of Nuclear Power Plants and Renewable Energy Sources

Yekaterinburg

Baghdad



K. M. Khaliapov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Konstantin M. Khaliapov - postgraduate student of the Department of Nuclear Power Plants and Renewable Energy Sources

Yekaterinburg



References

1. . Kozlov V.N, Nimvitsky A.A, Pyrogenetic etchnology of wood processing, Goslesbumizdat, 1954-620 p.

2. . J.M Heikkinen, J.C.Hordijk W.De Jonq H.Splithoff, ‘‘Thermoqravimetry as a tool to classify waste components to use for enerqy’’, Journal of Ana-lytical and Applied Pyrolysis 2004. V.71.P883-900.

3. . W.R.Hiessen, N.Y, Basel, Combustion and incineration process: applications in environmental enqineerinq 3rd ed.. reversed and expanded , Marcel: Dakker Inc..2002.

4. . A.Matveev. A.Dubinin. S.Shcheklein. ‘‘Steam gasification of waste for purpose of methanol productin’’ 18th Internationae Muetidiscipeinary Seientific Geo Conference 2018. Section Recyceind. 2Juey-8Juey 2018 Albena-Bulgaria.

5. . Green S. ‘‘Waste to energy’’ Power Eng. J., 2002.Jan.P.21-23.W.

6. . Sorokin V.A., Yanovsky L.S., Kozlov V.A ‘‘Ram rocket engines on solid and paste-like propellants’’ M: Fizmatlit, 2010, 318 p.

7. . Shcheklein S.E., Dubinin A.M. ‘‘Solid wastes conversion into electric and thermal energy using a gasifier and an electrochemical generator’’ WIT Transactions on Ecology and the Environment. 2017. T. 224. S. 451-46.

8. . Minsk, Handbook of heat power engineering of electric plants. Publisher Belarus. 1974.

9. . Nagaraja, Shashank S. Sahu, Amrit B. Panigrahy, Snehasish, Curran, Henry J. ‘‘A fundamental study on the pyrolysis of hydrocarbons ’’ Combustion and Flame, vol. 233, Nov.2021.

10. . Wang, Yunpu, Yang, Qi, Yang, Qi, Liu, Yuhuan ..etc, Review on the catalytic pyrolysis of waste oil for the production of renewable hydrocarbon fuels, Elsevier Ltd, 2021.

11. . Ratnasari, Devy K. Nahil, Mohamad A. Williams, Paul T. ‘‘Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils’’ Journal of Analytical and Applied Pyrolysis, vol. 124, pp. 631-637, Mar.2017.

12. . Chiaramonti, David, Buffi, Marco, Rizzo, Andrea Maria, Prussi, Matteo, Martelli, Francesco, ‘‘Bio-hydrocarbons through catalytic pyrolysis of used cook-ing oils: Towards sustainable jet and road fuels ’’ Energy Procedia, 2015.

13. . Zhao, Dongting, Wang, Xianhua, Miller, James B. H uber, G eorge W . ‘ ‘The C hemistry a nd K inetics o f Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals’’ Journal of ChemSusChem , vol. 13 , 2020.

14. . Pal, Shashank , Pal, Shashank , Sharma, Amit Kumar , Ghodke, Praveen Kumar , Pandey, Shyam , Patel, Alok ‘‘ Recent Advances in Catalytic Pyrolysis of Municipal Plastic Waste for the Production of Hydro-carbon Fuels’’ Processes 2022 .

15. . Xu J, Long F, Jiang J, Li F, Zhai Q, Wang F, et al. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels. J Cleaner Prod.

16. . Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP. Sustainable bioenergy production from marginal lands in the US Midwest. Na-ture 2013; 493:.

17. . Snowdon R, Friedt W. European biodiesel can be sustainable. Nature 2012;490. 37-

18. . Yu Z, Wang Y, Jiang L, Dai L, Liu Y, Ruan R, et al. Microwave-assisted catalytic pyrolysis of Chinese tallow kernel oil for aromatic production in a downdraft reactor. J Anal Appl Pyrol 2018;133:16–21.

19. . Pyrolysis coupled with microwave-absorbent of soapstock for bio-oil in a downdraft reactor. Energy Convers Manage 2019;185:11–20.

20. . Yu Z, Wang Y, Jiang L, Dai L, Liu Y, Ruan R, et al. Conversion of woody oil into bio- oil in a downdraft reactor using a novel silicon carbide foam supported MCM41 composite catalyst. RSC Adv 2019;9:19729–39.

21. . Wang F, Xu J, Jiang J, Liu P, Li F, Ye J, et al. Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide cata-lyst. Fuel, 2018, Vol. 216, pp. 738-746.

22. . L am SS, Wan M ahari WA, Jusoh A, Chong CT, Lee CL, Chase HA. Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with de-sirable properties. J Cleaner Prod 2017;147:

23. . Xu L, Cheng J-H, Liu P, Wang Q, Xu Z-X, Liu Q, et al. Production of bio-fuel oil from pyrolysis of plant acidified oil. Renewable Energy 2019;130:910–9.

24. . Wiggers V R, B eims R F, E nder L. Renewable Hydrocarbons from Triglyceride’s Thermal Cracking. Frontiers in Bioenergy and Biofuels 2017.

25. . Zakera A, Chen Z, Wang X, Zhang Q. Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Process Technol 2019;187:84–104.

26. . Luque R, Menendez JA, Arenillas A, Cot J. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? Energy Environ Sci 2012;5:5481–8. 25–9.

27. . Wang X, Morrison W, Du Z. Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition. ApEn 2012;99: 386–92.

28. . Zhang Y, C hen P, Liu S, P eng P, Min M , Cheng Y, et al. Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresour Technol.

29. . Borges FC, Xie Q, Min M, Muniz LAR, Farenzena M, Trierweiler JO, et al. Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM- 5 catalyst. Bioresour Technol 2014;166:518–26.

30. . Shpil'rain EH.EH., Malyshenko S.P., Kule-shov G.G. Vvedenie v vodorodnuyu ehnergetiku. M.: Ehnergoatomizdat. 1984.

31. . Pilar Lisbona, Luis M., Romeo Enhanced. Coal gasification heated by unmixed combustion integreated with an hybrid system of SOFC/GT // International Journal of Hydrogen Energy. Volume 33, Issue 20, Oc-tober 2008. P. 5755-5764.

32. . Promes E.J., Woudstra T., Schoenmakers L., Oldenbroek V., Thallam Thattai A., Aravind P.V. Thermodynamic evaluation and experimental validation of 253 MW Integrated Coal Gasification Combined Cycle power plant in Buggenum, Netherlands // Applied Energy, Volume 155, 1 October 2015. P. 181-194.

33. . Solodova N.L., Cherkasova E.I., Salakhov I.I., Tutubalina O.P. Vodorod - ehnergonositel' i reagent. Tekhnologii ego polucheniya // Izvestiya vys-shikh uchebnykh zavedenii. Problemy ehnergetiki. 2017. T. 19. № 11-12. s. 39-50.

34. . Filimonova A.A., Chichirkov A.A., Chichirkova N.D., Filimonov A.G., Pechenkin A.V. Perspektivy razvitiya vodorodnoi ehnergetiki v Tatarstane // Iz-vestiya vysshikh uchebnykh zavedenii. Problemy ehnergetiki. 2020 t. 22 № 6, s. 79-91.

35. . Dubinin A.M., Shcheklein S.E. Ugol'naya mini-TEHTS na osnove gazogeneratora i ehlektrokhimicheskogo generatora // Mezhdunarodnyi nauchnyi zhur-nal Al'ternativnaya ehnergetika i ehkologiya. 2017. № 7-9 (219-221) s. 60-74.

36. . Dubinin A., Matveev A., Shcheklein S., Filippenko V. Study of car tire pyrolysis in an industrial-scale olant with subsequent chemical analysis of the pyrolysis liquid. 20th international multidiscipli-nary scientific geoconference SCGEM 2020. 18-24 Au-gust 2020 / Albena, Bulgaria.

37. . Baskakov A.P. Perspektivy szhiganiya tverdykh bytovykh otkhodov v Rossii v tselyakh polucheniya tepla i ehlektroehnergii. Teploehnergetika, 2014 №4 c. 21-29

38. . Baskakov A.P. Nagrev i okhlazhdenie metallov v kipyashchem sloe. M.: Metallurgiya. 1974. 272 s.

39. . Karapet'yants M.KH. Khimicheskaya termodinamika. M.: Khimiya. 1975.

40. . Karapet'yants M.KH., Karapet'yants M.L. Osnovnye termodinamicheskie konstanty neorganiche-skikh i organicheskikh veshchestv. M. Khimiya 1968. 470 s.

41. . Korovin N.A. Toplivnye ehlementy i ehlektrokhimicheskie ustanovki. M. Izdatel'stvo MEHI. 2005. 145 s.

42. . Baskakov A.P., Dubinin A.M., Tuponogov V.G. O mekhanizme parovoi gazifikatsii uglya // Pro-myshlennaya ehnergetika. 2008. №4. s. 40-42.

43. . Munts V.A., Volkova YU.V., Plotnikov N.S., Dubinin A.M., Tuponogov V.G., Chernyshov V.A. Issledovanie kharakteristik ehnergeticheskoi ustanovki 5 KVt na tverdooksidnykh toplivnykh ehlementakh s parovym riformingom prirodnogo gaza // Teploehnergetika. 2005. №11 s 15-20.

44. . Baskakov A.P., Volkova YU.V. Fizikokhimicheskie osnovy teplovykh protsessov. M.: Teplotekhnik. 2013. 173 s.

45. . Zhao Yingru, Sadhu Khan Juma, Lanzini Andrea, Brandon Nigel, Shah Nilay. Optimal integration stratigies for a syngasfuelled SOFC and gas turbine hybrid // Journal of Power Sources, Volume 196, Issue 22, 15 November 2011, p. 9516-9527.

46. . Korolev V.N., Tolmachev E.M. Tekhnicheskaya termodinamika: Uchebnoe posobie / V.N. Korolev, E.M. Tolmachev. Ekaterinburg: UGTU-UPI. 2001. 180 s.

47. . Yakovlev B.V. Povyshenie ehffektivnosti sistem teplofikatsii i teplosnabzheniya / B.V. Yakovlev - M.: Novosti teplosnabzheniya. 2008. 448 s.

48. . Spravochnoe posobie teploehnergetika ehlektricheskikh stantsii. Minsk "Belarus'". 1974. 368 s.

49. . Promyshlennye teplovye ehlektrostantsii: uchebnik dlya vuzov / Bazhenov M.I., Bogorodskii A.S., Sazanov B.V., Yurenev V.N.; pod redaktsiei E.YA. Sokolova. - 2-e izd., pererab. - M.: Ehnergiya. 1979. 269 s.

50. . Matveev A.V., Shcheklein S.E., Dubinin A.M., Mohammed A. Qasim, Filippenkov V.A. Electricity production from hydrocarbon pyrolysis products// Mezhdunarodnyi nauchnyi zhurnal Al'ternativnaya ehnerge-tika i ehkologiya. 2023. № 4 (409) s. 94-103.


Review

For citations:


Shcheklein S.E., Dubinin A.M., Matveev A.V., Filippenkov V.A., Qasim M.A., Khaliapov K.M. Air conversion of pyrolysis products of hydrocarbon raw materials into synthesis gas (H2+CO) for the production of electrical energy using solid oxide fuel cells. Alternative Energy and Ecology (ISJAEE). 2023;(5):45-58. (In Russ.) https://doi.org/10.15518/isjaee.2023.05.045-058

Views: 364


ISSN 1608-8298 (Print)