Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Thermal effects of pretreatment of dark fermentation feedstocks in a vortex layer apparatus

https://doi.org/10.15518/isjaee.2023.05.068-086

Abstract

Anaerobic digestion is an efficient way to process organic waste to produce biogas. At the same time, one of the stages of anaerobic digestion is dark fermentation, which makes it possible to obtain biohydrogen. To increase the bioavailability and efficiency of mass transfer between substrate particles and hydrolytic and, as a result, increase the efficiency of dark fermentation, it is advisable to pretreat organic waste by various methods. One of the most promising and energy efficient methods of preparing the substrate for anaerobic fermentation, including dark fermentation, is its processing in the vortex layer apparatus (VLA). However, not all aspects of VLA application in anaerobic digestion substrate pretreatment systems have been fully considered: in order to introduce the VLA into the organic waste dark fermentation system, it is necessary to determine, among other things, the energy characteristics of VLA under various modes of its operation, and the data obtained must be used in the development of the energy balance of the anaerobic processing system. Thus, the purpose of this work is to experimentally determine the thermal effects of pretreatment of dark fermentation substrates in VLA under various modes of its operation using the response surface methodology. To achieve this goal, an experimental setup was developed and created, which made it possible to conduct an experiment using the experiment matrix built in the Design-Expert software, based on the central composite design (CCD). The resulting models and their response surfaces have a determination coefficient of more than 0.99, which indicates their adequacy. The coefficient of conversion of electricity into heat on the VLA coil is on mean at the level of 0.54±0.11, and the coefficient of useful use of heat VLA for heating the initial substrate is 0.42±0.06, which indicates a high potential for using waste heat. Thus, the obtained models of thermal effects of pretreatment of dark fermentation substrates in the vortex layer apparatus can be used to determine both the heat directly introduced into the feedstock during pretreatment and the heat removed by the heat exchanger to maintain the VLA operating mode. In this case, the heat removed by the heat exchanger can be used as a source of low-grade heat.

About the Authors

А. А. Kovalev
Federal Scientific Agroengineering Center VIM
Russian Federation

Andrey A. Kovalev - senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences

1st Institutsky Proezd, 5, 109428, Moscow

Researcher ID: F-7045-2017

Scopus Author ID: 57205285134



D. А. Kovalev
Federal Scientific Agroengineering Center VIM
Russian Federation

Dmitry A. Kovalev - head of the laboratory of bioenergy and supercritical technologies, candidate of technical Sciences, engineer

1st Institutsky Proezd, 5, 109428, Moscow

Researcher ID: K-4810-2015



E. V. Kovaleva
Moscow Aviation Institute (National Research University)
Russian Federation

Ekaterina V. Kovalevа - design engineer, master

Volokolamskoe shosse, 4, 125993, Moscow



V. A. Panchenko
Russian University of Transport (MIIT)
Russian Federation

Vladimir A. Panchenko - Candidate of Technical Sciences, Associate Professor of the Department of the Russian University of Transport, Senior Researcher of the Laboratory

Obrazcova Street, 9b9, 127994, Moscow

ResearcherID: P-8127-2017

Scopus Author ID: 57201922860

Web of Science Researcher ID: AAE-1758-2019



Yu. V. Litti
Winogradsky Institute of Microbiology, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Russian Federation

Yuriy V. Litti - Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences, engineer

Leninskiy Pr-t, 33, 2, 119071, Moscow

Researcher ID: C-4945-2014

Scopus Author ID: 55251689800



References

1. . Nozhevnikova A.N., Kallistova A.Yu., Litti Yu.V., Kevbrina M.V. (2016) Biotechnology and microbiology of anaerobic processing of organic municipal waste. - M .: University book.-- 320 p.(in Russ).

2. . Khan, M. A.; Ngo, H. H.; Guo, W.; Liu, Y.; Zhang, X.; Guo, J.; Chang, S. W.; Nguyen, D. D.; Wang, J. Biohydrogen Production from Anaerobic Digestion and Its Potential as Renewable Energy. Renewable En-ergy 2018, 129, 754–768. https://doi.org/https://doi.org/10.1016/j.renene.2017.04.029.

3. . Marone, A.; Ayala-Campos, O. R.; Trably, E.; Carmona-Martínez, A. A.; Moscoviz, R.; Latrille, E.; Steyer, J.-P.; Alcaraz-Gonzalez, V.; Bernet, N. Coupling Dark Fermentation and Microbial Electrolysis to Enhance Bio-Hydrogen Production from Agro-Industrial Wastewaters and by-Products in a Bio-Refinery Framework. International Journal of Hydrogen Energy 2017, 42 (3), 1609–1621. https://doi.org/https://doi.org/10.1016/j.ijhydene.2016.09.166.

4. . Kim, S.-H.; Kumar, G.; Chen, W.-H.; Khanal, S. K. Renewable Hydrogen Production from Biomass and Wastes (ReBioH2-2020). Bioresource Technology 2021, 331, 125024. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125024.

5. . Dauptain, K.; Schneider, A.; Noguer, M.; Fontanille, P.; Escudie, R.; Carrere, H.; Trably, E. Impact of Microbial Inoculum Storage on Dark Fermentative H2 Production. Bioresource Technology 2021, 319, 124234. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124234.

6. . Kovalev, A. A.; Kovalev, D. A.; Litti, Y. V.; Katraeva, I. V. Biohydrogen Production in the Two-Stage Process of Anaerobic Bioconversion of Organic Matter of Liquid Organic Waste with Recirculation of Digister Effluent. International Journal of Hydrogen Energy 2020. https://doi.org/10.1016/j.ijhydene.2020.07.124.

7. . Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Zhuravleva, E. A.; Katraeva, I. V; Grigoriev, V. S.; Litti, Y. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a Two-Stage Anaerobic Digestion Process. International Journal of Hydrogen Energy 2021, 46 (80), 39688–39699. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.09.239.

8. . Renaudie, M.; Dumas, C.; Vuilleumier, S.; Ernst, B. Biohydrogen Production in a Continuous Liq-uid/Gas Hollow Fiber Membrane Bioreactor: Efficient Retention of Hydrogen Producing Bacteria via Granule and Biofilm Formation. Bioresource Technology 2021, 319, 124203. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124203.

9. . Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Influence of Initial Uncontrolled PH on Acidogenic Fermentation of Brewery Spent Grains to Biohydrogen and Volatile Fatty Acids Production: Optimization and Scale-Up. Bioresource Technology 2021, 319, 124233. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124233.

10. . Sekoai, P. T.; Daramola, M. O.; Mogwase, B.; Engelbrecht, N.; Y oro, K. O.; P etrus d u Preez, S.; Mhlongo, S.; Ezeokoli, O. T.; Ghimire, A.; Ayeni, A. O.; Hlongwane, G. N. Revising the Dark Fermentative H2 Research and Development Scenario – An Overview of the Recent Advances and Emerging Technological Approaches. Biomass and Bioenergy 2020, 140, 105673. https://doi.org/https://doi.org/10.1016/j.biombioe.2020.105673.

11. . Elreedy, A.; Fujii, M.; Koyama, M.; Nakasaki, K.; Tawfik, A. Enhanced Fermentative Hydrogen Production from Industrial Wastewater Using Mixed Culture Bacteria Incorporated with Iron, Nickel, and Zinc-Based Nanoparticles. Water research 2019, 151, 349–361. https://doi.org/10.1016/j.watres.2018.12.043.

12. . Kumar, G.; Mudhoo, A.; Sivagurunathan, P.; Nagarajan, D.; Ghimire, A.; Lay, C.-H.; Lin, C.-Y.; Lee, D.-J.; Chang, J.-S. Recent Insights into the Cell Immobilization Technology Applied for Dark Fermentative Hydrogen Production. Bioresource Technology 2016, 219, 725–737. https://doi.org/https://doi.org/10.1016/j.biortech.2016.08.065.

13. . Srivastava, N.; Srivastava, M.; Mishra, P. K.; Kausar, M. A.; Saeed, M.; Gupta, V. K.; Singh, R.; Ramteke, P. W. Advances in Nanomaterials Induced Biohydrogen Production Using Waste Biomass. Bioresource Technology 2020, 307, 123094. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123094.

14. . Taherdanak, M.; Zilouei, H.; Karimi, K. The Effects of Fe0 and Ni0 Nanoparticles versus Fe2+ and Ni2+ Ions on Dark Hydrogen Fermentation. Interna-tional Journal of Hydrogen Energy 2015, 41. https://doi.org/10.1016/j.ijhydene.2015.11.110.

15. . Carrère, H.; Bougrier, C.; Castets, D.; Delgenès, J. P. Impact of Initial Biodegradability on Sludge Anaerobic Digestion Enhancement by Thermal Pretreatment. Journal of Environmental Science and Health, Part A 2008, 43 (13), 1551–1555. https://doi.org/10.1080/10934520802293735.

16. . Luste, S.; Luostarinen, S.; Sillanpää, M. Ef-fect of Pre-Treatments on Hydrolysis and Methane Production Potentials of by-Products from Meat-Processing Industry. Journal of Hazardous Materials 2009, 164 (1), 247–255. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.08.002.

17. . Izumi, K.; Okishio, Y.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of Particle Size on Anaerobic Digestion of Food Waste. International Biodeterioration & Biodegradation 2010, 64 (7), 601–608. https://doi.org/https://doi.org/10.1016/j.ibiod.2010.06.013.

18. . Raynal, J.; Delgenès, J. P.; Moletta, R. Two-Phase Anaerobic Digestion of Solid Wastes by a Multiple Liquefaction Reactors Process. Bioresource Technology 1998, 65 (1), 97–103. https://doi.org/https://doi.org/10.1016/S0960-8524(98)00009-1.

19. . Salminen, E.; Einola, J.; Rintala, J. The Me-thane Production of Poultry Slaughtering Residues and Effects of Pre‐treatments on the Methane Production of Poultry Feather. Environmental Technology 2003, 24 (9), 1079–1086. https://doi.org/10.1080/09593330309385648.

20. . JIN, Y.; LI, H.; MAHAR, R. B.; WANG, Z.; NIE, Y. Combined Alkaline and Ultrasonic Pretreatment of Sludge before Aerobic Digestion. Journal of Environmental Sciences 2009, 21 (3), 279–284. https://doi.org/https://doi.org/10.1016/S1001-0742(08)62264-0.

21. . Kovalev D., Kovalev A., Litti Yu., Nozhevnikova A., Katraeva I. The Effect of the Load on Organic Matter on Methanogenesis in the Continuous Rrocess of Bioconversion of Anaerobic Bioreactor Substrates Pretreated in the Vortex Layer Apparatus. Ecology and Industry of Russia. 2019; 23(12):9-13. (In Russ.) https://doi.org/10.18412/1816-0395-2019-12-9-13

22. . Mikheeva, E R; Katraeva, I V; Litti, Yu V; Kovalev, A A; Kovalev, D A. Influence of Confection-ery Wastewater Pretreatment in Vortex Layer Apparatus on Its Physical and Chemical Properties. BIO Web Conf. 2022, 48, 2011. https://doi.org/10.1051/bioconf/20224802011.

23. . Kovalev, A. A.; Kovalev, D. A.; Litti, Y. V; Katraeva, I. V; Grigoriev, V. S. Chapter 7 - Optimization of the Organic Waste Anaerobic Digestion in Biogas Plants through the Use of a Vortex Layer Apparatus; Vasant, P., Thomas, J., Munapo, E., Weber, G.-W. B. T.- A. of A. I. in a G. E. E., Eds.; Academic Press, 2022; pp 129–150. https://doi.org/https://doi.org/10.1016/B978-0-323-89785-3.00016-5.

24. . Mikheeva, E. R.; Katraeva, I. V; Kovalev, A. A.; Kovalev, D. A.; Litti, Y. V. Effects of Pretreatment in a Vortex Layer Apparatus on the Properties of Confectionery Wastewater and Its Dark Fermentation. International Journal of Hydrogen Energy 2022, 47 (55), 23165–23174. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.05.183.

25. . Mikheeva, E. R.; Katraeva, I. V; Kovalev, A. A.; Biryuchkova, P. D.; Zhuravleva, E. A.; Vishnyakova, A. V; Litti, Y. V. Pretreatment in Vortex Layer Appa-ratus Boosts Dark Fermentative Hydrogen Production from Cheese Whey. Fermentation. 2022. https://doi.org/10.3390/fermentation8120674.

26. . Litti, Y.; Kovalev, D.; Kovalev, A.; Katraeva, I.; Russkova, Y.; Nozhevnikova, A. Increasing the Efficiency of Organic Waste Conversion into Biogas by Mechanical Pretreatment in an Electromagnetic Mill. In Journal of Physics: Conference Series; 2018; Vol. 1111. https://doi.org/10.1088/1742-6596/1111/1/012013.

27. . Mikheeva, E.; Katraeva, I.; Vorozhtsov, D.; Litti, Y.; Nozhevnikova, A. Efficiency of Two-Phase Anaerobic Fermentation and the Physicochemical Properties of the Organic Fraction of Municipal Solid Waste Processed in a Vortex-Layer Apparatus. Applied Bio chemistry and Microbiology 2020, 56, 736–742. https://doi.org/10.1134/S0003683820060113.

28. . Kovalev A.A., Kovalev D.A., Grigoriev V.S. Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2020; 30(1):92-110. DOI: https://doi.org/10.15507/2658-4123.030.202001.092-110

29. . Kovalev, A. A.; Kovalev, D. A.; Panchenko, V. A.; Zhuravleva, E. A.; Laikova, A. A.; Shekhurdina, S. V; Vivekanand, V.; Litti, Y. V. Approbation of an Innovative Method of Pretreatment of Dark Fermenta-tion Feedstocks. International Journal of Hydrogen Energy 2022, 47 (78), 33272–33281. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.08.051.

30. . Kovalev A.A., Kovalev D.A., Litti YU.V., Katraeva I.V. Proizvodstvo biovodoroda v dvukhstadiinom protsesse anaehrobnoi biokonversii organicheskogo veshchestva zhidkikh organicheskikh otkhodov s retsirkulyatsiei ehfflyuenta metantenka. Al'ternativnaya ehnergetika i ehkologiya (ISJAEE). 2020;(7-18):87-100. https://doi.org/10.15518/isjaee.2020.07-18.87-100.

31. . Kovalev, A.; Kovalev, D.; Grigoriev, V.; Litti, Y. The Vortex Layer Apparatus as a Source of Low-Grade Heat in the Process of Pretreatment of the Substrate before Anaerobic Digestion. IOP Conference Series: Earth and Environmental Science 2021, 938, 12004. https://doi.org/10.1088/1755-1315/938/1/012004.

32. . Ghaleb, A. A. S.; Kutty, S. R. M.; Ho, Y.-C.; Jagaba, A. H.; Noor, A.; Al-Sabaeei, A. M.; Almahbashi, N. M. Y. Response Surface Methodology to Optimize Methane Production from Mesophilic Anaerobic Co-Digestion of Oily-Biological Sludge and Sugarcane Bagasse. Sustainability 2020, 12 (5). https://doi.org/10.3390/su12052116.


Review

For citations:


Kovalev А.А., Kovalev D.А., Kovaleva E.V., Panchenko V.A., Litti Yu.V. Thermal effects of pretreatment of dark fermentation feedstocks in a vortex layer apparatus. Alternative Energy and Ecology (ISJAEE). 2023;(5):68-86. (In Russ.) https://doi.org/10.15518/isjaee.2023.05.068-086

Views: 370


ISSN 1608-8298 (Print)