Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Calculation of reconstruction volumes of common standard sizes of hot-water boilers during the transition to a methane-hydrogen fuel

https://doi.org/10.15518/isjaee.2023.06.157-173

Abstract

The ongoing research provides for the development of general technical solutions for the creation of a methanehydrogen water-heating boiler unit. The advantages of this source of thermal energy over similar units is the reduction in specific carbon dioxide emissions per unit of thermal energy produced, which is relevant for the decarbonization of the Russian heat and power industry. As part of the work, a mathematical model was created for the mixed thermal calculation of a hot water boiler unit (calibration for the furnace and constructive for the convective part) in the Python programming language. The calculation in the model is carried out based on the normative method. Implemented the ability to calculate the conversion of the most popular standard sizes of hot water boilers to another gas composition: KVGM-10, KVGM-20, KVGM-30, KVGM-50, KVGM-100, KVGM-180, PTVM-30, PTVM-50, PTVM-100 and PTVM-180. The result of the calculation of the reconstruction of the convective part is the required area of the heat-receiving surface, which makes it possible to estimate the volume of reconstruction. The paper analyzes the volume of reconstruction of burners RGMG-10, RGMG-20 and RGMG-30 when switching to a methane-hydrogen mixture.

About the Authors

A. V. Fedyukhin
NRU MPEI (National Research University MPEI)
Russian Federation

Fedyukhin Alexander Valeryevich - PhD, associate professor, Department of Industrial Thermal Engineering

111250, Moscow, ext. ter. Lefortovo municipal district, st. Krasnokazarmennaya, 14, building 1



D. V. Semin
NRU MPEI (National Research University MPEI)
Russian Federation

Semin Daniil Vladimirovich - postgraduate student, research engineer, Department of Industrial Thermal Engineering

111250, Moscow, ext. ter. Lefortovo municipal district, st. Krasnokazarmennaya, 14, building 1



S. A. Dronov
NRU MPEI (National Research University MPEI)
Russian Federation

Dronov Stanislav Anatol`evich - postgraduate student, research engineer, Department of Industrial Thermal Engineering

111250, Moscow, ext. ter. Lefortovo municipal district, st. Krasnokazarmennaya, 14, building 1



A. G. Gusenko
NRU MPEI (National Research University MPEI)
Russian Federation

Gusenko Aleksey Gennad’evich - student, engineer, Department of Industrial Thermal Engineering

111250, Moscow, ext. ter. Lefortovo municipal district, st. Krasnokazarmennaya, 14, building 1



V. A. Karasevich
Delta P Limited
Russian Federation

Karasevich Vladislav Aleksandrovich - PhD, Scientific Director, associated professor, Renewable Energy Department, Gubkin State Oil & Gas University; Research er, Autonomy Energy Center, MIPT. Of MIPT

140105, Moscow region, Ramenskoye, Chugunova st., 41, apt. 164 



M. S. Povernov
Delta P Limited
Russian Federation

Povernov Mikhail SergeevichTechnical Director, Senior specialist, Autonomy Energy Center, MIPT

140105, Moscow region, Ramenskoye, Chugunova st., 41, apt. 164 



References

1. Lambert M. Power-to-Gas: Linking Electricity and Gas in a Decarbonising World? // Oxford Energy Insight: 39. Oxford, 2018. p. 17.

2. Alfayaad A.G.KH. Vozmozhnost' primeneniya vodoroda kak topliva dlya budushchei raboty gazovoi turbiny // MEZHDUNARODNYI ZHURNAL PRIKLADNYKH I FUNDAMENTAL'NYKH ISSLEDOVANII. 2022. № 4. S. 18–24.

3. Ramenskii A.YU. Vodorod v kachestve topliva: Predmet i tseli standartizatsii // Mezhdunarodnyi Nauchnyi Zhurnal Al'ternativnaya Ehnergetika I Ehkologiya. 2015. № 1 (165). S. 33–44.

4. Slesarev D.YU. Szhiganie vodoroda v gorelkakh infrakrasnogo izulcheniya svetlogo tipa // Vestnik MGSU. 2011. № 7. S. 536–541.

5. Egorov A.N. Issledovanie parametrov vodorodkislorodnogo parogeneratora s okhlazhdaemoi kameroi sgoraniya // TRUDY AKADEMEHNERGO. 2017. № 4. S. 16–23.

6. Aminov R.Z., Schastlivtsev A.I., Bairamov A.N. Ehksperimental'naya otsenka sostava generiruemogo para pri szhiganii vodoroda v kislorode // Teplofizika Vysokikh Temperatur. 2020. T. 58, № 3. S. 437–444.

7. Jou C. i dr. Enhancing the performance of a high-pressure cogeneration boiler with waste hydrogenrich fuel // Int. J. Hydrog. Energy. 2008. Vol. 33, no. 20. pp. 5806–5810.

8. Taimarov M.A., Lavirko YU.V. Otsenka intensivnosti khimicheskikh reaktsii obrazovaniya oksidov azota pri szhiganii metano-vodorodnykh smesei razlichnogo sostava // VESTNIK TEKHNOLOGICHESKOGO UNIVERSITETA. 2018. T. 21, № 7. S. 58–61.

9. Büyükakın M.K., Öztuna S. Numerical investigation on hydrogen-enriched methane combustion in adomestic backpressure boiler and non-premixed burner system from flame structure and pollutants aspect // Int. J. Hydrog. Energy. 2020. Vol. 45, no. 60. pp. 35246– 35256.

10. Hoelzner K., Szyszka A. Operation of 20 kWth gas-fired heating boilers with hydrogen, natural gas and hydrogen/natural gas mixtures. First test results from phase 1 (March 1993) of the Neunburg vorm Wald solar hydrogen project // Int. J. Hydrog. Energy. 1994. Vol. 19, no. 10. pp. 843–851.

11. Boulahlib M.S., Medaerts F., Boukhalfa M.A. Experimental study of a domestic boiler using hydrogen methane blend and fuel-rich staged combustion // Int. J. Hydrog. Energy. 2021. Vol. 46, no. 75. pp. 37628– 37640.

12. Bălănescu D.T., Homutescu V.M. Effects of hydrogen-enriched methane combustion on latent heat recovery potential and environmental impact of condensing boilers // Appl. Therm. Eng. 2021. Vol. 197. pp. 117–411.

13. Smiyan O.D., Grigorenko G.M., Vainman A.B. Effect of hydrogen on corrosion damage of metal of the high-pressure energetic boiler drum // Int. J. Hydrog. Energy. 2002. Vol. 27, no. 7–8. pp. 801–812.

14. Tant Z., Shkurenok D.YU., Sakharovskii YU.A. Nizkotemperaturnoe okislenie vodoroda na gidrofobnykh platinovykh i palladievykh katalizatorakh v pilotnom reaktore // USPEKHI V KHIMII I KHIMICHESKOI TEKHNOLOGII. 2009. T. 23, № 8 (101). S. 61– 66.

15. Ivanova N.A. Nizkotemperaturnyi kataliticheskii konvertor vodoroda na osnove gidrofobnykh katalizatorov: Dissertatsiya na soiskanie uchenoi stepeni kandidata tekhnicheskikh nauk. FGBOU VO «Rossiiskii khimiko-tekhnologicheskii universitet imeni D.I. MendeleevA», 2020. 168 s.

16. Bukin A.N. i dr. Osobennosti glubokogo kataliticheskogo okisleniya vodoroda s ispol'zovaniem katalizatora Pt/Al2O3 primenitel'no k protsessu detritizatsii vozdukha // Uspekhi V Khimii I Khimicheskoi Tekhnologii. 2010. T. 24, № 7 (112). S. 44–49.

17. Pak YU.S. i dr. Nizkotemperaturnyi kataliticheskii konvektor vodoroda v vou s pryamym kontaktom reaktsionnoi smesi s teplonositelem // ICHMS. 2009. S. 996–997.

18. Ivanova N.A., Nichiporuk I.A., Pak YU.S. Nizkotemperaturnoe kataliticheskoe okislenie vodoroda v stekhiometricheskoi smesi s kislorodom v konvertore na osnove gidrofobnogo katalizatora // Uspekhi V Khimii I Khimicheskoi Tekhnologii. 2014. T. 28, № 6 (155). S. 128–130.


Review

For citations:


Fedyukhin A.V., Semin D.V., Dronov S.A., Gusenko A.G., Karasevich V.A., Povernov M.S. Calculation of reconstruction volumes of common standard sizes of hot-water boilers during the transition to a methane-hydrogen fuel. Alternative Energy and Ecology (ISJAEE). 2023;(6):157-173. (In Russ.) https://doi.org/10.15518/isjaee.2023.06.157-173

Views: 254


ISSN 1608-8298 (Print)