

Инновационный подход к интенсификации анаэробной биоконверсии за счет комплексной предобработки в аппарате вихревого слоя и рециркуляции сгущенного эффлюента
https://doi.org/10.15518/isjaee.2023.10.032-052
Аннотация
Сельскохозяйственные отходы, называемые биомассой, представляют большой интерес как возобновляемый источник энергии. Целью данной работы было определение оптимальных значений коэффициента рециркуляции (RR) сгущённого эффлюента при применении нового подхода к интенсификации анаэробной конверсии, обеспечивающего выход биогаза повышенного качества. Данный подход включает рециркуляцию сгущенного эффлюента и предварительную обработку смеси исходного субстрата и сгущённого эффлюента в аппарате вихревого слоя. Для этого была рассмотрена работа экспериментальной биогазовой установки без рециркуляции и с рециркуляцией, начиная с очень низких значений RR, от 0,034 до 1, для обеспечения высоких объёмного метана (ОВМ, MPR) и удельного (УВМ, MY) выходов метана. С точки зрения ОВМ и УВМ наиболее привлекательными выглядят коэффициенты рециркуляции 0,034 и 0,071, однако при коэффициенте рециркуляции 0,5 содержание сероводорода снижается до 14 ppm с одновременным увеличением ОВМ на 12% по сравнению с контролем.
Об авторах
А. А. КовалевФедеральное государственное бюджетное научное учреждение “Федеральный научный агроинженерный центр ВИМ”
Россия
Ковалев Андрей Александрович, доктор технических наук, главный научный сотрудник лаборатории биоэнергетических технологий,
109428, Москва, 1-й Институтский проезд, 5.
Индекс Хирша: РИНЦ - 9; Scopus - 9; Researchgate- 11;
Researcher ID: F-7045-2017; Scopus Author ID: 57205285134.
Д. А. Ковалев
Россия
Ковалев Дмитрий Александрович, кандидат технических наук, заведующий лабораторией биоэнергетических технологий,
109428, Москва, 1-й Институтский проезд, 5.
Индекс Хирша (РИНЦ): 6;
Researcher ID: K-4810-2015.
Ю. В. Караева
Россия
Караева Юлия Викторовна, кандидат технических наук, ведущий научный сотрудник лаборатории энергетических систем и технологий,
420111, Казань, ул. Лобачевского, д. 2/31, а/я 260.
Индекс Хирша: РИНЦ - 7; Scopus - 4; WoS - 3;
Researcher ID: F-6917-2017; Scopus Author ID: 56856782800.
Vivekanand Vivekanand
Малавийский национальный технологический институт Джайпура, Центр энергетики и окружающей среды
Индия
Vivekanand Vivekanand, Доцент,
Джайпур, 302017, Раджастхан.
Индекс Хирша: WoS - 33;
Scopus Author ID: 57211114758.
Pareek Nidhi
Центральный университет Раджастана, Школа естественных наук,
Индия
Nidhi Pareek, Доцент лаборатории микробного катализа и технологических процессов кафедры микробиологии,
Аджмер 305817, Раджастхан.
Индекс Хирша: WoS - 28.
Masakapalli Shyam Kumar
Индийский технологический институт Манди, Школа фундаментальных наук, Центр BioX
Индия
Shyam Kumar Masakapalli, Доцент,
Каманд, 175075, Химачал-Прадеш.
Индекс Хирша: WoS - 17.
Е. А. Журавлева
Россия
Журавлева Елена Александровна, младший научный сотрудник лаборатории микробиологии антропогенных мест обитания, аспирант,
119071 Москва, Ленинский пр-т, 33.
Индекс Хирша: РИНЦ - 1; Scopus - 6; WoS -5;
Researcher ID: JBS-4297-2023; Scopus Author ID: 57216346570.
А. А. Лайкова
Россия
Лайкова Александра Алексеевна, инженер лаборатории микробиологии антропогенных мест обитания,
119071 Москва, Ленинский пр-т, 33.
Индекс Хирша: Scopus - 2; WoS - 2;
Researcher ID: IVU-7977-2023, Scopus Author ID: 58044317600.
С. В. Шехурдина
Россия
Шехурдина Светлана Витальевна, младший научный сотрудник лаборатории микробиологии антропогенных мест обитания,
119071 Москва, Ленинский пр-т, 33.
Индекс Хирша: Scopus - 3;
Scopus Author ID: 57564192200.
Ю. В. Литти
Россия
Литти Юрий Владимирович, кандидат биологических наук, заведующий лабораторией микробиологии антропогенных мест обитания,
119071 Москва, Ленинский пр-т, 33.
Индекс Хирша: РИНЦ - 12; Scopus - 16; WoS - 12;
Researcher ID: C-4945-2014; Scopus Author ID: 55251689800.
Список литературы
1. . Duque-Acevedo, M.; Belmonte-Ureña, L. J.; Cortés-García, F. J.; Camacho-Ferre, F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Global Ecology and Conservation 2020, 22, e00902. https://doi.org/https://doi.org/10.1016/j.gecco.2020.e00902.
2. . Tripathi, N.; Hills, C. D.; Singh, R. S.; Atkinson, C. J. Biomass Waste Utilisation in Low-Carbon Products: Harnessing a Major Potential Resource. npj Climate and Atmospheric Science 2019, 2 (1), 35. https://doi.org/10.1038/s41612-019-0093-5.
3. . Roszkowska, S.; Szubska-Włodarczyk, N. What Are the Barriers to Agricultural Biomass Market Development? The Case of Poland. Environment Systems and Decisions 2022, 42 (1), 75–84. https://doi.org/10.1007/s10669-021-09831-1.
4. . Tomaszewska, B.; Akkurt, G. G.; Kaczmarczyk, M.; Bujakowski, W.; Keles, N.; Jarma, Y. A.; Baba, A.; Bryjak, M.; Kabay, N. Utilization of Renewable Energy Sources in Desalination of Geothermal Water for Agriculture. Desalination 2021, 513, 115151. https://doi.org/https://doi.org/10.1016/j.desal.2021.115151.
5. . Stürmer, B.; Leiers, D.; Anspach, V.; Brügging, E.; Scharfy, D.; Wissel, T. Agricultural Biogas Production: A Regional Comparison of Technical Parameters. Renewable Energy 2021, 164, 171–182. https://doi.org/https://doi.org/10.1016/j.renene.2020.09.074.
6. . Cavana, M.; Leone, P. Biogas Blending into the Gas Grid of a Small Municipality for the Decarbonization of the Heating Sector. Biomass and Bioenergy 2019, 127, 105295. https://doi.org/https://doi.org/10.1016/j.biombioe.2019.105295.
7. . Dahlgren, S. Biogas-Based Fuels as Renewable Energy in the Transport Sector: An Overview of the Potential of Using CBG, LBG and Other Vehicle Fuels Produced from Biogas. Biofuels 2020, 1–13. https://doi.org/10.1080/17597269.2020.1821571.
8. . Xue, S.; Song, J.; Wang, X.; Shang, Z.; Sheng, C.; Li, C.; Zhu, Y.; Liu, J. A Systematic Comparison of Biogas Development and Related Policies between China and Europe and Corresponding Insights. Renewable and Sustainable Energy Reviews 2020, 117, 109474. https://doi.org/https://doi.org/10.1016/j.rser.2019.109474
9. . Barragán-Escandón, A.; Olmedo Ruiz, J. M.; Curillo Tigre, J. D.; Zalamea-León, E. F. Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context. Sustainability 2020, 12 (7). https://doi.org/10.3390/su12072669.
10. . Ghosh, S.; Uday, V.; Giri, A.; Srinivas, S. Biogas to Methanol: A Comparison of Conversion Processes Involving Direct Carbon Dioxide Hydrogenation and via Reverse Water Gas Shift Reaction. Journal of Cleaner Production 2019, 217, 615–626. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.171.
11. . Nalbant, Y.; Colpan, C. O. An Overview of Hydrogen Production from Biogas BT - Accelerating the Transition to a 100% Renewable Energy Era; Uyar, T. S., Ed.; Springer International Publishing: Cham, 2020; pp 355–373. https://doi.org/10.1007/978-3-030-40738-4_16.
12. . Esposito, E.; Dellamuzia, L.; Moretti, U.; Fuoco, A.; Giorno, L.; Jansen, J. C. Simultaneous Production of Biomethane and Food Grade CO2 from Biogas: An Industrial Case Study. Energy Environ. Sci. 2019, 12 (1), 281–289. https://doi.org/10.1039/C8EE02897D.
13. . Barzee, T. J.; Edalati, A.; El-Mashad, H.; Wang, D.; Scow, K.; Zhang, R. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Frontiers in Sustainable Food Systems 2019, 3. https://doi.org/10.3389/fsufs.2019.00058.
14. . Tayibi, S.; Monlau, F.; Marias, F.; Cazaudehore, G.; Fayoud, N.-E.; Oukarroum, A.; Zeroual, Y.; Barakat, A. Coupling Anaerobic Digestion and Pyrolysis Processes for Maximizing Energy Recovery and Soil Preservation According to the Circular Economy Concept. Journal of Environmental Management 2021, 279, 111632. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.111632.
15. . González-Arias, J.; Gil, M. V.; Fernández, R. Á.; Martínez, E. J.; Fernández, C.; Papaharalabos, G.; Gómez, X. Integrating Anaerobic Digestion and Pyrolysis for Treating Digestates Derived from Sewage Sludge and Fat Wastes. Environmental Science and Pollution Research 2020, 27 (26), 32603–32614. https://doi.org/10.1007/s11356-020-09461-1.
16. . Romio, C.; Kofoed, M. V. W.; Møller, H. B. Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review. Sustainability 2021, 13 (16). https://doi.org/10.3390/su13169295.
17. . Olatunji, K. O.; Ahmed, N. A.; Ogunkunle, O. Optimization of Biogas Yield from Lignocellulosic Materials with Different Pretreatment Methods: A Review. Biotechnology for Biofuels 2021, 14 (1), 159. https://doi.org/10.1186/s13068-021-02012-x.
18. . Ahmed, B.; Kumar Tyagi, V.; Kazmi, A. A.; Khursheed, A. New Insights into Thermal-Chemical Pretreatment of Organic Fraction of Municipal Solid Waste: Solubilization Effects, Recalcitrant Formation, Biogas Yield and Energy Efficiency. Fuel 2022, 319, 123725. https://doi.org/https://doi.org/10.1016/j.fuel.2022.123725
19. . Banu J, R.; Sugitha, S.; Kavitha, S.; Kannah R, Y.; Merrylin, J.; Kumar, G. Lignocellulosic Biomass Pretreatment for Enhanced Bioenergy Recovery: Effect of Lignocelluloses Recalcitrance and Enhancement Strategies. Frontiers in Energy Research 2021, 9. https://doi.org/10.3389/fenrg.2021.646057.
20. . Paudel, S. R.; Banjara, S. P.; Choi, O. K.; Park, K. Y.; Kim, Y. M.; Lee, J. W. Pretreatment of Agricultural Biomass for Anaerobic Digestion: Current State and Challenges. Bioresource Technology 2017, 245, 1194–1205. https://doi.org/https://doi.org/10.1016/j.biortech.2017.08.182.
21. . Ferdeș, M.; Dincă, M. N.; Moiceanu, G.; Zăbavă, B. Ștefania; Paraschiv, G. Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review. Sustainability 2020, 12 (17). https://doi.org/10.3390/su12177205.
22. . Brémond, U.; Bertrandias, A.; Loisel, D.; Jimenez, J.; Steyer, J.-P.; Bernet, N.; Carrere, H. Assessment of Fungal and Thermo-Alkaline PostTreatments of Solid Digestate in a Recirculation Scheme to Increase Flexibility in Feedstocks Supply Management of Biogas Plants. Renewable Energy 2020, 149, 641–651. https://doi.org/https://doi.org/10.1016/j.renene.2019.12.062.
23. . Sambusiti, C.; Monlau, F.; Ficara, E.; Musatti, A.; Rollini, M.; Barakat, A.; Malpei, F. Comparison of Various Post-Treatments for Recovering Methane from Agricultural Digestate. Fuel Processing Technology 2015, 137, 359–365. https://doi.org/https://doi.org/10.1016/j.fuproc.2015.04.028.
24. . Brémond, U.; Bertrandias, A.; de Buyer, R.; Latrille, E.; Jimenez, J.; Escudié, R.; Steyer, J.-P.; Bernet, N.; Carrere, H. Recirculation of Solid Digestate to Enhance Energy Efficiency of Biogas Plants: Strategies, Conditions and Impacts. Energy Conversion and Management 2021, 231, 113759. https://doi.org/https://doi.org/10.1016/j.enconman.2020.113759.
25. . Lindner, J.; Zielonka, S.; Oechsner, H.; Lemmer, A. Effects of Mechanical Treatment of Digestate after Anaerobic Digestion on the Degree of Degradation. Bioresource Technology 2015, 178, 194–200. https://doi.org/https://doi.org/10.1016/j.biortech.2014.09.117.
26. . Xue, S.; Qiu, L.; Guo, X.; Yao, Y. Effect of Liquid Digestate Recirculation on Biogas Production and Enzyme Activities for Anaerobic Digestion of Corn Straw. Water Science and Technology 2020, 82 (1), 144–156. https://doi.org/10.2166/wst.2020.338.
27. . Zheng, Z.; Cai, Y.; Zhao, Y.; Meng, X.; Zhang, Y.; Lu, C.; Hu, Y.; Cui, Z.; Wang, X. Achieve Clean and Efficient Biomethane Production by Matching between Digestate Recirculation and Straw-to-Manure Feeding Ratios. Journal of Cleaner Production 2020, 263, 121414. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121414.
28. . Ai, P.; Chen, M.; Ran, Y.; Jin, K.; Peng, J.; Abomohra, A. E.-F. Digestate Recirculation through CoDigestion with Rice Straw: Towards High Biogas Production and Efficient Waste Recycling. Journal of Cleaner Production 2020, 263, 121441. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121441.
29. . Janesch, E.; Pereira, J.; Neubauer, P.; Junne, S. Phase Separation in Anaerobic Digestion: A Potential for Easier Process Combination? Frontiers in Chemical Engineering 2021, 3. https://doi.org/10.3389/fceng.2021.711971.
30. . Wang, Y.; Wang, Z.; Zhang, Q.; Li, G.; Xia, C. Comparison of Bio-Hydrogen and Bio-Methane Production Performance in Continuous Two-Phase Anaerobic Fermentation System between Co-Digestion and Digestate Recirculation. Bioresource Technology 2020, 318, 124269. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124269.
31. . Chen, H.; Zhang, W.; Wu, J.; Chen, X.; Liu, R.; Han, Y.; Xiao, B.; Yu, Z.; Peng, Y. Improving TwoStage Thermophilic-Mesophilic Anaerobic Co-Digestion of Swine Manure and Rice Straw by Digestate Recirculation. Chemosphere 2021, 274, 129787. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129787.
32. . Wu, C.; Huang, Q.; Yu, M.; Ren, Y.; Wang, Q.; Sakai, K. Effects of Digestate Recirculation on a TwoStage Anaerobic Digestion System, Particularly Focusing on Metabolite Correlation Analysis. Bioresource Technology 2018, 251, 40–48. https://doi.org/https://doi.org/10.1016/j.biortech.2017.12.020.
33. . Ma, X.; Yu, M.; Yang, M.; Zhang, S.; Gao, M.; Wu, C.; Wang, Q. Effect of Liquid Digestate Recirculation on the Ethanol-Type Two-Phase Semi-Continuous Anaerobic Digestion System of Food Waste. Bioresource Technology 2020, 313, 123534. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123534.
34. . Jiraprasertwong, A.; Maitriwong, K.; Chavadej, S. Production of Biogas from Cassava Wastewater Using a Three-Stage Upflow Anaerobic Sludge Blanket (UASB) Reactor. Renewable Energy 2019, 130, 191–205. https://doi.org/https://doi.org/10.1016/j.renene.2018.06.034.
35. . Menzel, T.; Neubauer, P.; Junne, S. Role of Microbial Hydrolysis in Anaerobic Digestion. Energies 2020, 13 (21). https://doi.org/10.3390/en13215555.
36. . Paillet, F.; Barrau, C.; Escudié, R.; Bernet, N.; Trably, E. Robust Operation through Effluent Recycling for Hydrogen Production from the Organic Fraction of Municipal Solid Waste. Bioresource technology 2021, 319, 124196. https://doi.org/10.1016/j.biortech.2020.124196.
37. . Lukitawesa; Wikandari, R.; Millati, R.; Taherzadeh, M. J.; Niklasson, C. Effect of Effluent Recirculation on Biogas Production Using Two-Stage Anaerobic Digestion of Citrus Waste. Molecules 2018, 23 (12). https://doi.org/10.3390/molecules23123380.
38. . Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Zhuravleva, E. A.; Katraeva, I. V; Grigoriev, V. S.; Litti, Y. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a TwoStage Anaerobic Digestion Process. International Journal of Hydrogen Energy 2021, 46 (80), 39688–39699. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.09.239.
39. . Kovalev, A. A.; Kovalev, D. A.; Litti, Y. V; Katraeva, I. V. The Synergistic Effect of the Thickened Digestate Treatment in the Vortex Layer Apparatus Prior to Its Recirculation into the Reactor on the Characteristics of Anaerobic Bioconversion of Organic Waste. Journal of Physics: Conference Series 2020, 1652 (1), 12014. https://doi.org/10.1088/1742-6596/1652/1/012014.
40. . Kovalev, A. A.; Kovalev, D. A.; Grigoriev, V. S. Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus. Engineering Technologies and Systems 2020, 30 (1), 92–110. https://doi.org/10.15507/2658-4123.030.202001.092-110.
41. . Kovalev, A.; Kovalev, D.; Grigoriev, V.; Litti, Y. The Vortex Layer Apparatus as a Source of LowGrade Heat in the Process of Pretreatment of the Substrate before Anaerobic Digestion. IOP Conference Series: Earth and Environmental Science 2021, 938, 12004. https://doi.org/10.1088/1755-1315/938/1/012004.
42. . Kovalev, D. A.; Kovalev, A. A.; Litti, Y. V.; Nozhevnikova, A. N.; Katraeva, I. V. The Effect of the Load on Organic Matter on Bioconversion of Pretreated Anaerobic Bioreactor Substrates. Ecology and Industry of Russia 2019, 23 (12), 9–13. https://doi.org/10.18412/1816-0395-2019-12-9-13.
43. . Khatri, S.; Wu, S.; Kizito, S.; Zhang, W.; Li, J.; Dong, R. Synergistic Effect of Alkaline Pretreatment and Fe Dosing on Batch Anaerobic Digestion of Maize Straw. Applied Energy 2015, 158, 55–64. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.08.045.
44. . Zhang, Y.; Feng, Y.; Quan, X. Zero-Valent Iron Enhanced Methanogenic Activity in Anaerobic Digestion of Waste Activated Sludge after Heat and Alkali Pretreatment. Waste Management 2015, 38, 297–302. https://doi.org/https://doi.org/10.1016/j.wasman.2015.01.036.
45. . Abdelsalam, E.; Samer, M.; Attia, Y. A.; AbdelHadi, M. A.; Hassan, H. E.; Badr, Y. Influence of Zero Valent Iron Nanoparticles and Magnetic Iron Oxide Nanoparticles on Biogas and Methane Production from Anaerobic Digestion of Manure. Energy 2017, 120, 842–853. https://doi.org/https://doi.org/10.1016/j.energy.2016.11.137.
46. . Mueller, N. C.; Braun, J.; Bruns, J.; Černík, M.; Rissing, P.; Rickerby, D.; Nowack, B. Application of Nanoscale Zero Valent Iron (NZVI) for Groundwater Remediation in Europe. Environmental Science and Pollution Research 2012, 19 (2), 550–558. https://doi.org/10.1007/s11356-011-0576-3.
47. . Fan, Z.; Zhang, Q.; Gao, B.; Li, M.; Liu, C.; Qiu, Y. Removal of Hexavalent Chromium by Biochar Supported NZVI Composite: Batch and Fixed-Bed Column Evaluations, Mechanisms, and Secondary Contamination Prevention. Chemosphere 2019, 217, 85–94. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.11.009.
48. . Xu, J.-J.; Cheng, Y.-F.; Jin, R.-C. Long-Term Effects of Fe3O4 NPs on the Granule-Based Anaerobic Ammonium Oxidation Process: Performance, Sludge Characteristics and Microbial Community. Journal of Hazardous Materials 2020, 398, 122965. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122965.
49. . Chang, Y. C.; Huang, S. C.; Chen, K. F. Evaluation of the Effects of Nanoscale Zero-Valent Iron (NZVI) Dispersants on Intrinsic Biodegradation of Trichloroethylene (TCE). Water Science and Technology 2014, 69 (11), 2357–2363. https://doi.org/10.2166/wst.2014.169.
50. . Zhu, L.; Gao, K.; Jin, J.; Lin, H.; Xu, X. Analysis of ZVI Corrosion Products and Their Functions in the Combined ZVI and Anaerobic Sludge System. Environmental Science and Pollution Research 2014, 21 (22), 12747–12756. https://doi.org/10.1007/s11356-014-3215-y.
51. . Beiki, H.; Keramati, M. Improvement of Methane Production from Sugar Beet Wastes Using TiO2 and Fe3O4 Nanoparticles and Chitosan Micropowder Additives. Applied Biochemistry and Biotechnology 2019, 189 (1), 13–25. https://doi.org/10.1007/s12010-019-02987-2.
52. . Liu, C.; Tong, Q.; Li, Y.; Wang, N.; Liu, B.; Zhang, X. Biogas Production and Metal Passivation Analysis during Anaerobic Digestion of Pig Manure: Effects of a Magnetic Fe3O4/FA Composite Supplement. RSC Adv. 2019, 9 (8), 4488–4498. https://doi.org/10.1039/C8RA09451A.
53. . Noonari, A. A.; Mahar, R. B.; Sahito, A. R.; Brohi, K. M. Anaerobic Co-Digestion of Canola Straw and Banana Plant Wastes with Buffalo Dung: Effect of Fe3O4 Nanoparticles on Methane Yield. Renewable Energy 2019, 133, 1046–1054. https://doi.org/https://doi.org/10.1016/j.renene.2018.10.113.
54. . Hu, Y.; Hao, X.; Zhao, D.; Fu, K. Enhancing the CH4 Yield of Anaerobic Digestion via Endogenous CO2 Fixation by Exogenous H2. Chemosphere 2015, 140, 34–39. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.10.022.
55. . Liu, Y.; Whitman, W. B. Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Annals of the New York Academy of Sciences 2008, 1125 (1), 171–189. https://doi.org/https://doi.org/10.1196/annals.1419.019.
56. . Yang, Y.; Guo, J.; Hu, Z. Impact of Nano Zero Valent Iron (NZVI) on Methanogenic Activity and Population Dynamics in Anaerobic Digestion. Water Research 2013, 47 (17), 6790–6800. https://doi.org/https://doi.org/10.1016/j.watres.2013.09.012.
57. . Huang, Y.-X.; Guo, J.; Zhang, C.; Hu, Z. Hydrogen Production from the Dissolution of Nano Zero Valent Iron and Its Effect on Anaerobic Digestion. Water Research 2016, 88, 475–480. https://doi.org/https://doi.org/10.1016/j.watres.2015.10.028.
58. . Van Steendam, C.; Smets, I.; Skerlos, S.; Raskin, L. Improving Anaerobic Digestion via Direct Interspecies Electron Transfer Requires Development of Suitable Characterization Methods. Current Opinion in Biotechnology 2019, 57, 183–190. https://doi.org/https://doi.org/10.1016/j.copbio.2019.03.018.
59. . Zhang, M.; Zang, L. A Review of Interspecies Electron Transfer in Anaerobic Digestion. {IOP} Conference Series: Earth and Environmental Science 2019, 310 (4), 42026. https://doi.org/10.1088/1755-1315/310/4/042026.
60. . Amen, T. W. M.; Eljamal, O.; Khalil, A. M. E.; Matsunaga, N. Evaluation of Nano Zero Valent Iron Effects on Fermentation of Municipal Anaerobic Sludge and Inducing Biogas Production. {IOP} Conference Series: Earth and Environmental Science 2017, 67, 12004. https://doi.org/10.1088/1755-1315/67/1/012004.
61. . Zhang, M.; Li, J.; Wang, Y. Impact of BiocharSupported Zerovalent Iron Nanocomposite on the Anaerobic Digestion of Sewage Sludge. Environmental Science and Pollution Research 2019, 26 (10), 10292–10305. https://doi.org/10.1007/s11356-019-04479-6.
62. . Wang, P.; Chen, X.; Liang, X.; Cheng, M.; Ren, L. Effects of Nanoscale Zero-Valent Iron on the Performance and the Fate of Antibiotic Resistance Genes during Thermophilic and Mesophilic Anaerobic Digestion of Food Waste. Bioresource Technology 2019, 293, 122092. https://doi.org/https://doi.org/10.1016/j.biortech.2019.122092.
63. . Lar, J. S.; LI, X. Removal of H2S during Anaerobic Bioconversion of Dairy Manure. Chinese Journal of Chemical Engineering 2009, 17 (2), 273–277. https://doi.org/https://doi.org/10.1016/S1004-9541(08)60205-0.
Рецензия
Для цитирования:
Ковалев А.А., Ковалев Д.А., Караева Ю.В., Vivekanand V., Nidhi P., Shyam Kumar M., Журавлева Е.А., Лайкова А.А., Шехурдина С.В., Литти Ю.В. Инновационный подход к интенсификации анаэробной биоконверсии за счет комплексной предобработки в аппарате вихревого слоя и рециркуляции сгущенного эффлюента. Альтернативная энергетика и экология (ISJAEE). 2023;(10):32-52. https://doi.org/10.15518/isjaee.2023.10.032-052
For citation:
Kovalev A.A., Kovalev D. A. , Karaeva J.V., Vivekanand V., Nidhi P., Shyam Kumar M., Zhuravleva E.A., Laikova A.A., Shekhurdina S.V., Litti Yu.V. Innovative organic waste pretreatment approach for efficient anaerobic bioconversion: effect of recirculation ratio at pre-processing in vortex layer apparatus on biogas production. Alternative Energy and Ecology (ISJAEE). 2023;(10):32-52. (In Russ.) https://doi.org/10.15518/isjaee.2023.10.032-052