Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Мировые тенденции в производстве и использовании биотоплива

https://doi.org/10.15518/isjaee.2023.10.053-063

Аннотация

Переэтерификация биомассы без предварительной экстракции рассматривается как процесс получения биодизеля. Реакцию переэтерификации проводили в присутствии этилового спирта и серной кислоты. Анализировали жирнокислотный состав полученного образца. Основными идентифицированными жирными кислотами оказались ненасыщенные жирные кислоты С18:2 (31,86%) С18:1 (12,79%). Основной насыщенной жирной кислотой является пальмитиновая кислота с соотношением 16:0 (12,46%). Рассчитаны характеристики биодизеля (йодное число, цетановое число, плотность, высшая теплота сгорания), согласующиеся с литературными данными.

Об авторах

Н. В. Зибарев
Санкт-Петербургский политехнический университет Петра Великого
Россия

Зибарев Никита Васильевич, инженер НИЛ «Промышленная экология», 

29, ул. Политехническая, Санкт-Петербург, 195251.



Н. А. Политаева
Санкт-Петербургский политехнический университет Петра Великого
Россия

Политаева Наталья Анатольевна, доктор технических наук, профессор, профессор Высшей школы гидротехнического и энергетического строительства,

29, ул. Политехническая, Санкт-Петербург, 195251.



А. М. Опарина
Санкт-Петербургский политехнический университет Петра Великого
Россия

Опарина Анна Михайловна, лаборант, инженер НИЛ «Промышленная экология», 

29, ул. Политехническая, Санкт-Петербург, 195251.



Список литературы

1. . State Standard 33104-2014. Solid biofuel. Terms and difinitions. Accessed Jul 02, 2023, from: https://docs.cntd.ru/document/1200119859#7D20K3. (In Russian).

2. . BP statistical review of world energy 67th Edition https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (2018) accessed 21 November 2018.

3. . Mena-Cervantes, V.Y., Hernández-Altamirano, R., García-Solares, S.M., Arreola-Valerio, E. (2022). Biodiesel in Circular Economy. In: Bandh, S.A., Malla, F.A. (eds) Biofuels in Circular Economy. Springer, Singapore. https://doi.org/10.1007/978-981-19-5837-3_14.

4. . Renewables 2022 Global Status Report Asia Factsheet. https://www.ren21.net/wpcontent/uploads/2019/05/GSR2022_Fact_Sheet_Asia.pdf.

5. . Argus. Neftepanorama. Ezhenedel'nyj obzor mirovogo rynka nefti, nefteproduktov i nizkouglerodnyh istochnikov energii. https://www.argusmedia.com/-/media/Files/sample-reports/argus-neftepanoramasample2022.ashx?la=en&hash=4644C72E787AFB19480FDEA518806C4A90C58363 (In Russian).

6. . Mączyńska, Joanna, et al. "Production and use of biofuels for transport in Poland and Brazil–The case of bioethanol." Fuel 241 (2019): 989-996. https://doi.org/10.1016/j.fuel.2018.12.116.

7. . Lopes, Mario Lucio, et al. "Ethanol production in Brazil: a bridge between science and industry." brazilian journal of microbiology 47 (2016): 64-76. https://doi.org/10.1016/j.bjm.2016.10.003.

8. . Stattman, Sarah L., Otto Hospes, and Arthur PJ Mol. "Governing biofuels in Brazil: A comparison of ethanol and biodiesel policies." Energy Policy 61 (2013): 22-30. https://doi.org/10.1016/j.enpol.2013.06.005

9. . China’s Biodiesel Production to Expand by 32% in 2022. Advanced BioFuels USA. Available at https://advancedbiofuelsusa.info/chinas-biodieselproduction-to-expand-by-32-in-2022.

10. . Chen, H., Wang, X., Wang, Q. (2020) Microalgal biofuels in China: The past, progress and prospects. Gcb Bioenergy, 12(12), 1044-1065. https://doi.org/10.1111/gcbb.12741.

11. . EIA U.S. (2022). Most U.S. fuel ethanol production capacity at the start of 2022 was in the Midwest. Accessed Mar 02, 2023, from: https://www.eia.gov/todayinenergy/detail.php?id=53539.

12. . Namsaraev, Z.B. & Gotovtsev, P.M. & Komova, A.V. & Vasilov, R.G., 2018. "Current status and potential of bioenergy in the Russian Federation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 625-634. DOI: 10.1016/j.rser.2017.08.045.

13. . Borovitskaya Polina S., Varlamova Elena S. Problems and prospects for the development of the russian biofuel market. Razvitie sovremennoj ekonomiki Rossii. 2021. С. 366-371. EDN HBIXQY.

14. . Chernova, N. I., Kiseleva, S. V., Korobkova, T. P., Zaytsev, S. I. (2008). Microalgae as а feedstock for biofuel production (Mikrovodorosli v kachestve syr'ya dlya polucheniya biotopliva). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 9, 68-74. (In Russian).

15. . Lu S, Wang J, Ma Q, Yang J, Li X, Yuan Y-J (2013) Phospholipid Metabolism in an Industry Microalga Chlorella sorokiniana: The Impact of Inoculum Sizes. PLoS ONE 8(8): e70827. https://doi.org/10.1371/journal.pone.0070827.

16. . D’oca M. G. M. et al. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa //Biomass and bioenergy. – 2011. – V. 35. – №. 4. – P. 1533-1538. https://doi.org/10.1016/j.biombioe.2010.12.047.

17. . N. Nagle, P. Lemke. Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24. 1990. P.355-361. https://doi.org/10.1007/BF02920259.

18. . J. Huang et al. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresource Technology. 2015. Vol.180. P.47-53. https://doi.org/10.1016/j.biortech.2014.12.072.

19. . M.G.M. D’Oca, P.L. Haertel, D.C. De Moraes, F.J. Callegaro, M.H. Kurz, E.G. Primel, Morón- J.A. Villarreyes. Base/acid-catalyzed FAEE production from hydroxylated vegetable oils. 2011. Vol.90(2). P.912-916. https://doi.org/10.1016/j.fuel.2010.10.030.

20. . Vohra, Mustafa, et al. «Bioethanol production: Feedstock and current technologies». Journal of Environmental Chemical Engineering 2.1. 2014. P.573-584. https://doi.org/10.1016/j.jece.2013.10.013.

21. . Y. Warabi, D. Kusdiana, S. Saka. Biodiesel fuel from vegetable oil by various supercritical alcohols. Appl Biochem Biotechnol. 2004.113-116. P.793-801. DOI: 10.1385/abab:115:1-3:0793. PMID: 15054233.

22. . I. Suh, William et al. «Direct transesterification of wet microalgal biomass for preparation of biodiesel». Algal research 12. 2015. P.405-411. https://doi.org/10.1016/j.algal.2015.10.006.

23. . N.I. Bogdanov. Obshshestvo s ogranichennoj otvetstvennostyu Nauchno-proizvodstvennoe obedinenie «Algobiotekhnologiya». Abstract of invention plankton strain Chlorella kessleri to prevent «bloom» of bluegreen algae in ponds. INVENTION RU. № 2 585 523(13) C1; Application: 2015111746/10; Date of publication. 27.05.2016. No.15. (In Russian).

24. . Politaeva N.A., Svyatskaya Yu.A., Kuznetsova T.A., Olshanskaya L.N., Valiev R.S. Cultivation and use of Microalgae Chlorella and higher aquatic plants duckweed Lemna Peter the Great St. Petersburg Polytechnic University. – Saint Petersburg: Saint Petersburg Publishing and Bookselling firm "Nauka" 2017. – 87 p. – ISBN in 978-5-9999-2883-2. – EDN FSMTGT.J. (In Russian).

25. . Zibarev N.V., Politaeva N.A., Andrianova M.Yu. Use of Chlorella sorokiniana (Chlorellaceae, Chlorellales) microalgae for purification of waste water from the brewing industry. Povolzhskiy Journal of Ecology. 2021;(3):262-271. https://doi.org/10.35885/1684-7318-2021-3-262-271. (In Russian).

26. . Haas, Michael J., and Karen Wagner. "Simplifying biodiesel production: the direct or in situ transesterification of algal biomass." European journal of lipid science and technology 113.10 (2011): 1219-1229. https://doi.org/10.1002/ejlt.201100106.

27. . System Reference Manual. Accessed Jul 02, 2023, from: https://www.agilent.com/cs/library/usermanuals/public/G2887 90010_SimDis_Reference_040359.pdf.

28. . Trenkenshu R.P. Simplest models of microalgae growth. 1. Batch culture. Ekologiya morya. 2005. Vol.67. P.89-97. – EDN UMCNAR. (In Russian).

29. . POSTANOVLENIE ot 29 iyulya 2013 goda N 644 «Ob utverzhdenii Pravil holodnogo vodosnabzheniya i vodootvedeniya i o vnesenii izmenenij v nekotorye akty Pravitel'stva Rossijskoj Federacii» (s izmeneniyami na 30 noyabrya 2021 goda) Accessed Jul 04, 2023, from: https://docs.cntd.ru/document/499036854.

30. . SanPiN 1.2.3685-21 "Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya" ot 28 yanvarya 2021 goda. Accessed Jul 04, 2023, from: https://docs.cntd.ru/document/573500115 (In Russian).

31. . Moon CS. Estimations of the lethal and exposure doses for representative methanol symptoms in humans. Ann Occup Environ Med. 2017 Oct 2;29:44. doi: 10.1186/s40557-017-0197-5. PMID: 29026612; PMCID: PMC5625597.

32. . State Standard 31663-2012. Vegetable oils and animal fats. Determination of methyl esters of fatty acids by gas chromatography method. Moscow, Standartinform. Publ. 2014. 11p (In Russian).

33. . State Standart 31665-2012 Vegetable oils and animal fats. Preparation of methyl esters of fatty acids. Moscow. 2013. Standartinform. Publ. 2013. 11p. (In Russian).

34. . J.S. Lemões, R.C.M. Alves Sobrinho, S.P. Farias, R.R. de Moura, E.G. Primel, P.C. Abreu, et al. Sustainable production of biodiesel from microalgae by direct transesterification Sustain Chem Pharm, 3. 2016. P.33-38. https://doi.org/10.1016/j.scp.2016.01.002.

35. . Ye.A. Ulyukina. Features of biofuel application in agricultural production. Vestnik of Moscow Goryachkin Agroengineering University. 2019. No.6(94) P.23-27. DOI: 10.34677/1728-7936-2019-6-23-27.

36. . S.А. Markov et al. The use of biofuels based on vegetable oils in diesel engines. Engineering Journal: Science and Innovation. 2012. No.10(10). P.74-81. DOI: 10.18698/2308-6033-2012-10-392.

37. . P. Kalayasiri, N. Jeyashoke, & K. Krisnangkura. Survey of seed oils for use as diesel fuels. J Amer Oil Chem Soc 73. 1996. P.471-474. https://doi.org/10.100732/BF02523921.

38. . L.F. Ramírez-Verduzco, J. RodríguezRodríguez, & A.D. Jaramillo-Jacob. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91. 2012. P.102-111. DOI: 10.1016/J.FUEL.2011.06.070.

39. . Fuel Properties of Highly Polyunsaturated Fatty Acid Methyl Esters. Prediction of Fuel Properties of Algal Biodiesel. Energy & Fuels. 2012. Vol.26(8). P.5265-5273. DOI: 10.1021/ef300700v.

40. . State Standard 53605 -2009 Metilovye efiry zhirnyh kislot (FAME) dlya dizel'nyh dvigatelej. Accessed Jul 02, 2023, from: https://files.stroyinf.ru/Data/487/48715.pdf (In Russian).

41. . Ya.E. Sergeeva et al. Biodiesel Fuel Performance Calculation on the basis of Fatty Acid Composition of Lipids of Some Biotechnologically Important Microorganisms. Biotechnology. 2017. Vol.33. No.1. P.53-61. DOI:10.1016/0234-2758-2017-33-1-53-61.

42. . Y.H. Chen, B.Y. Huang, T.H. Chiang, & T.C. Tang. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel, 94. 2012. P.270-273. https://doi.org/10.1016/j.fuel.2011.11.031.

43. . Shekh, Ajam Yakub, et al. «Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa». Bioresource technology 138. 2013. P.382-386. https://doi.org/10.1016/j.biortech.2013.04.010.

44. . X. Zhou, L. Xia, H. Ge, D. Zhang, & C. Hu. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresource technology 138. 2013. P.131-135. https://doi.org/10.1016/j.biortech.2013.03.169.


Рецензия

Для цитирования:


Зибарев Н.В., Политаева Н.А., Опарина А.М. Мировые тенденции в производстве и использовании биотоплива. Альтернативная энергетика и экология (ISJAEE). 2023;(10):53-63. https://doi.org/10.15518/isjaee.2023.10.053-063

For citation:


Zibarev N.V., Politaeva N.A., Oparina A.M. Global trends in the production and use of biofuels. Alternative Energy and Ecology (ISJAEE). 2023;(10):53-63. https://doi.org/10.15518/isjaee.2023.10.053-063

Просмотров: 247


ISSN 1608-8298 (Print)