Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Global trends in the production and use of biofuels

https://doi.org/10.15518/isjaee.2023.10.053-063

Abstract

Transesterification of biomass without pre-extraction is considered as a process for obtaining biodiesel. The transesterification reaction was carried out in the presence of ethyl alcohol and sulfuric acid. The fatty acid composition of the obtained sample was analyzed. The main identified fatty acids were unsaturated fatty acids C18:2 (31.86%) C18:1 (12.79%). The main saturated fatty acid is palmitic acid with 16:0 (12.46%). The characteristics of biodiesel (iodine number, cetane number, density, highest heat of combustion) were calculated, which are consistent with the literature data.

About the Authors

N. V. Zibarev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Zibarev Nikita Vasilevich, Engineer at the Research Laboratory of "Industrial Ecology",

29, Polytechnicheskaya str., St. Petersburg, 195251.



N. A. Politaeva
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Politaeva Natalya Anatolevna, Doctor of Technical Sciences, Professor at the Higher School of Hydraulic and Energy Construction,

29, Polytechnicheskaya str., St. Petersburg, 195251.



A. M. Oparina
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Oparina Anna Mikhailovna, Laboratory Assistant, Engineer at the Research Laboratory of "Industrial Ecology",

29, Polytechnicheskaya str., St. Petersburg, 195251.



References

1. . State Standard 33104-2014. Solid biofuel. Terms and difinitions. Accessed Jul 02, 2023, from: https://docs.cntd.ru/document/1200119859#7D20K3. (In Russian).

2. . BP statistical review of world energy 67th Edition https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (2018) accessed 21 November 2018.

3. . Mena-Cervantes, V.Y., Hernández-Altamirano, R., García-Solares, S.M., Arreola-Valerio, E. (2022). Biodiesel in Circular Economy. In: Bandh, S.A., Malla, F.A. (eds) Biofuels in Circular Economy. Springer, Singapore. https://doi.org/10.1007/978-981-19-5837-3_14.

4. . Renewables 2022 Global Status Report Asia Factsheet. https://www.ren21.net/wpcontent/uploads/2019/05/GSR2022_Fact_Sheet_Asia.pdf.

5. . Argus. Neftepanorama. Ezhenedel'nyj obzor mirovogo rynka nefti, nefteproduktov i nizkouglerodnyh istochnikov energii. https://www.argusmedia.com/-/media/Files/sample-reports/argus-neftepanoramasample2022.ashx?la=en&hash=4644C72E787AFB19480FDEA518806C4A90C58363 (In Russian).

6. . Mączyńska, Joanna, et al. "Production and use of biofuels for transport in Poland and Brazil–The case of bioethanol." Fuel 241 (2019): 989-996. https://doi.org/10.1016/j.fuel.2018.12.116.

7. . Lopes, Mario Lucio, et al. "Ethanol production in Brazil: a bridge between science and industry." brazilian journal of microbiology 47 (2016): 64-76. https://doi.org/10.1016/j.bjm.2016.10.003.

8. . Stattman, Sarah L., Otto Hospes, and Arthur PJ Mol. "Governing biofuels in Brazil: A comparison of ethanol and biodiesel policies." Energy Policy 61 (2013): 22-30. https://doi.org/10.1016/j.enpol.2013.06.005

9. . China’s Biodiesel Production to Expand by 32% in 2022. Advanced BioFuels USA. Available at https://advancedbiofuelsusa.info/chinas-biodieselproduction-to-expand-by-32-in-2022.

10. . Chen, H., Wang, X., Wang, Q. (2020) Microalgal biofuels in China: The past, progress and prospects. Gcb Bioenergy, 12(12), 1044-1065. https://doi.org/10.1111/gcbb.12741.

11. . EIA U.S. (2022). Most U.S. fuel ethanol production capacity at the start of 2022 was in the Midwest. Accessed Mar 02, 2023, from: https://www.eia.gov/todayinenergy/detail.php?id=53539.

12. . Namsaraev, Z.B. & Gotovtsev, P.M. & Komova, A.V. & Vasilov, R.G., 2018. "Current status and potential of bioenergy in the Russian Federation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 625-634. DOI: 10.1016/j.rser.2017.08.045.

13. . Borovitskaya Polina S., Varlamova Elena S. Problems and prospects for the development of the russian biofuel market. Razvitie sovremennoj ekonomiki Rossii. 2021. С. 366-371. EDN HBIXQY.

14. . Chernova, N. I., Kiseleva, S. V., Korobkova, T. P., Zaytsev, S. I. (2008). Microalgae as а feedstock for biofuel production (Mikrovodorosli v kachestve syr'ya dlya polucheniya biotopliva). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 9, 68-74. (In Russian).

15. . Lu S, Wang J, Ma Q, Yang J, Li X, Yuan Y-J (2013) Phospholipid Metabolism in an Industry Microalga Chlorella sorokiniana: The Impact of Inoculum Sizes. PLoS ONE 8(8): e70827. https://doi.org/10.1371/journal.pone.0070827.

16. . D’oca M. G. M. et al. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa //Biomass and bioenergy. – 2011. – V. 35. – №. 4. – P. 1533-1538. https://doi.org/10.1016/j.biombioe.2010.12.047.

17. . N. Nagle, P. Lemke. Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24. 1990. P.355-361. https://doi.org/10.1007/BF02920259.

18. . J. Huang et al. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresource Technology. 2015. Vol.180. P.47-53. https://doi.org/10.1016/j.biortech.2014.12.072.

19. . M.G.M. D’Oca, P.L. Haertel, D.C. De Moraes, F.J. Callegaro, M.H. Kurz, E.G. Primel, Morón- J.A. Villarreyes. Base/acid-catalyzed FAEE production from hydroxylated vegetable oils. 2011. Vol.90(2). P.912-916. https://doi.org/10.1016/j.fuel.2010.10.030.

20. . Vohra, Mustafa, et al. «Bioethanol production: Feedstock and current technologies». Journal of Environmental Chemical Engineering 2.1. 2014. P.573-584. https://doi.org/10.1016/j.jece.2013.10.013.

21. . Y. Warabi, D. Kusdiana, S. Saka. Biodiesel fuel from vegetable oil by various supercritical alcohols. Appl Biochem Biotechnol. 2004.113-116. P.793-801. DOI: 10.1385/abab:115:1-3:0793. PMID: 15054233.

22. . I. Suh, William et al. «Direct transesterification of wet microalgal biomass for preparation of biodiesel». Algal research 12. 2015. P.405-411. https://doi.org/10.1016/j.algal.2015.10.006.

23. . N.I. Bogdanov. Obshshestvo s ogranichennoj otvetstvennostyu Nauchno-proizvodstvennoe obedinenie «Algobiotekhnologiya». Abstract of invention plankton strain Chlorella kessleri to prevent «bloom» of bluegreen algae in ponds. INVENTION RU. № 2 585 523(13) C1; Application: 2015111746/10; Date of publication. 27.05.2016. No.15. (In Russian).

24. . Politaeva N.A., Svyatskaya Yu.A., Kuznetsova T.A., Olshanskaya L.N., Valiev R.S. Cultivation and use of Microalgae Chlorella and higher aquatic plants duckweed Lemna Peter the Great St. Petersburg Polytechnic University. – Saint Petersburg: Saint Petersburg Publishing and Bookselling firm "Nauka" 2017. – 87 p. – ISBN in 978-5-9999-2883-2. – EDN FSMTGT.J. (In Russian).

25. . Zibarev N.V., Politaeva N.A., Andrianova M.Yu. Use of Chlorella sorokiniana (Chlorellaceae, Chlorellales) microalgae for purification of waste water from the brewing industry. Povolzhskiy Journal of Ecology. 2021;(3):262-271. https://doi.org/10.35885/1684-7318-2021-3-262-271. (In Russian).

26. . Haas, Michael J., and Karen Wagner. "Simplifying biodiesel production: the direct or in situ transesterification of algal biomass." European journal of lipid science and technology 113.10 (2011): 1219-1229. https://doi.org/10.1002/ejlt.201100106.

27. . System Reference Manual. Accessed Jul 02, 2023, from: https://www.agilent.com/cs/library/usermanuals/public/G2887 90010_SimDis_Reference_040359.pdf.

28. . Trenkenshu R.P. Simplest models of microalgae growth. 1. Batch culture. Ekologiya morya. 2005. Vol.67. P.89-97. – EDN UMCNAR. (In Russian).

29. . POSTANOVLENIE ot 29 iyulya 2013 goda N 644 «Ob utverzhdenii Pravil holodnogo vodosnabzheniya i vodootvedeniya i o vnesenii izmenenij v nekotorye akty Pravitel'stva Rossijskoj Federacii» (s izmeneniyami na 30 noyabrya 2021 goda) Accessed Jul 04, 2023, from: https://docs.cntd.ru/document/499036854.

30. . SanPiN 1.2.3685-21 "Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya" ot 28 yanvarya 2021 goda. Accessed Jul 04, 2023, from: https://docs.cntd.ru/document/573500115 (In Russian).

31. . Moon CS. Estimations of the lethal and exposure doses for representative methanol symptoms in humans. Ann Occup Environ Med. 2017 Oct 2;29:44. doi: 10.1186/s40557-017-0197-5. PMID: 29026612; PMCID: PMC5625597.

32. . State Standard 31663-2012. Vegetable oils and animal fats. Determination of methyl esters of fatty acids by gas chromatography method. Moscow, Standartinform. Publ. 2014. 11p (In Russian).

33. . State Standart 31665-2012 Vegetable oils and animal fats. Preparation of methyl esters of fatty acids. Moscow. 2013. Standartinform. Publ. 2013. 11p. (In Russian).

34. . J.S. Lemões, R.C.M. Alves Sobrinho, S.P. Farias, R.R. de Moura, E.G. Primel, P.C. Abreu, et al. Sustainable production of biodiesel from microalgae by direct transesterification Sustain Chem Pharm, 3. 2016. P.33-38. https://doi.org/10.1016/j.scp.2016.01.002.

35. . Ye.A. Ulyukina. Features of biofuel application in agricultural production. Vestnik of Moscow Goryachkin Agroengineering University. 2019. No.6(94) P.23-27. DOI: 10.34677/1728-7936-2019-6-23-27.

36. . S.А. Markov et al. The use of biofuels based on vegetable oils in diesel engines. Engineering Journal: Science and Innovation. 2012. No.10(10). P.74-81. DOI: 10.18698/2308-6033-2012-10-392.

37. . P. Kalayasiri, N. Jeyashoke, & K. Krisnangkura. Survey of seed oils for use as diesel fuels. J Amer Oil Chem Soc 73. 1996. P.471-474. https://doi.org/10.100732/BF02523921.

38. . L.F. Ramírez-Verduzco, J. RodríguezRodríguez, & A.D. Jaramillo-Jacob. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91. 2012. P.102-111. DOI: 10.1016/J.FUEL.2011.06.070.

39. . Fuel Properties of Highly Polyunsaturated Fatty Acid Methyl Esters. Prediction of Fuel Properties of Algal Biodiesel. Energy & Fuels. 2012. Vol.26(8). P.5265-5273. DOI: 10.1021/ef300700v.

40. . State Standard 53605 -2009 Metilovye efiry zhirnyh kislot (FAME) dlya dizel'nyh dvigatelej. Accessed Jul 02, 2023, from: https://files.stroyinf.ru/Data/487/48715.pdf (In Russian).

41. . Ya.E. Sergeeva et al. Biodiesel Fuel Performance Calculation on the basis of Fatty Acid Composition of Lipids of Some Biotechnologically Important Microorganisms. Biotechnology. 2017. Vol.33. No.1. P.53-61. DOI:10.1016/0234-2758-2017-33-1-53-61.

42. . Y.H. Chen, B.Y. Huang, T.H. Chiang, & T.C. Tang. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel, 94. 2012. P.270-273. https://doi.org/10.1016/j.fuel.2011.11.031.

43. . Shekh, Ajam Yakub, et al. «Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa». Bioresource technology 138. 2013. P.382-386. https://doi.org/10.1016/j.biortech.2013.04.010.

44. . X. Zhou, L. Xia, H. Ge, D. Zhang, & C. Hu. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresource technology 138. 2013. P.131-135. https://doi.org/10.1016/j.biortech.2013.03.169.


Review

For citations:


Zibarev N.V., Politaeva N.A., Oparina A.M. Global trends in the production and use of biofuels. Alternative Energy and Ecology (ISJAEE). 2023;(10):53-63. https://doi.org/10.15518/isjaee.2023.10.053-063

Views: 260


ISSN 1608-8298 (Print)