

Биологическое получение водорода: от базовых принципов к последним достижениям в улучшении процесса
https://doi.org/10.15518/isjaee.2023.10.103-141
Аннотация
Разработка безуглеродных видов топлива является приоритетным направлением современных исследований, в связи с неминуемым сокращением запасов ископаемого топлива и экологическими проблемами, вызванными их сжиганием. Одним из перспективных видов топлива является водород, обладающий высокой теплотой сгорания и образующих воду в качестве единственного продукта сгорания. В последнее время интенсивно разрабатываются и применяются методы получения водорода при помощи живых объектов – микроорганизмов, использующих напрямую энергию солнца и/или позволяющих эффективно утилизировать органические отходы без использования большого количества дополнительной энергии. В данном обзоре рассматриваются базовые принципы основных светозависимых (биофотолиз, фотоферментация) и светонезависимых (темновая ферментация и микробный электролиз) методов биологического получения водорода. Особое внимание уделено достоинствам и недостаткам этих методов, возможности объединения в единую систему, а также различным стратегиям улучшения продукции биоводорода, направленным на переход от лабораторных исследований к полномасштабному применению.
Ключевые слова
Об авторах
А. А. ИваненкоРоссия
Иваненко Артем Александрович, инженер лаборатории микробиологии антропогенных мест обитания, бакалавр,
119899, Москва, Ленинские Горы, 1, 12; 119071, Москва, Ленинский проспект, 33.
Researcher ID: JAX-4154-2023.
А. А. Лайкова
Россия
Лайкова Александра Алексеевна, м.н.с. лаборатории микробиологии антропогенных мест обитания,
119899, Москва, Ленинские Горы, 1, 12; 119071, Москва, Ленинский проспект, 33.
Индекс Хирша: Scopus - 2; WoS - 2;
Researcher ID: IVU-7977-2023, Scopus Author ID: 58044317600.
Е. А. Журавлева
Россия
Журавлева Елена Александровна, младший научный сотрудник лаборатории микробиологии антропогенных мест обитания, аспирант,
119071 Москва, Ленинский пр-т, 33.
Индекс Хирша: РИНЦ - 1; Scopus - 6; WoS -5;
Researcher ID: JBS-4297-2023; Scopus Author ID: 57216346570.
С. В. Шехурдина
Россия
Шехурдина Светлана Витальевна, младший научный сотрудник лаборатории микробиологии антропогенных мест обитания,
119899, Москва, Ленинские Горы, 1, 12; 119071, Москва, Ленинский проспект, 33
Индекс Хирша: Scopus - 3;
Scopus Author ID: 57564192200.
А. В. Вишнякова
Россия
Вишнякова Анастасия Валерьевна, младший научный сотрудник лаборатории микробиологии антропогенных мест обитания,
119071, Москва, Ленинский проспект, 33.
Индекс Хирша: Scopus - 4; WoS – 3;
Scopus Author ID: 57885320700.
А. А. Ковалев
Федеральное государственное бюджетное научное учреждение “Федеральный научный агроинженерный центр ВИМ”
Россия
Ковалев Андрей Александрович, доктор технических наук, главный научный сотрудник лаборатории биоэнергетических технологий,
109428, Москва, 1-й Институтский проезд, 5.
Индекс Хирша: РИНЦ - 9; Scopus - 9; Researchgate- 11;
Researcher ID: F-7045-2017; Scopus Author ID: 57205285134.
Д. А. Ковалев
Россия
Ковалев Дмитрий Александрович, кандидат технических наук, заведующий лабораторией биоэнергетических технологий,
109428, Москва, 1-й Институтский проезд, 5.
Индекс Хирша (РИНЦ): 6;
Researcher ID: K-4810-2015.
К. А. Трчунян
Армения
Трчунян Карен А., доктор биологических наук, директор НИИ Биологии, профессор кафедры Биохимии, Микробиологии и Биотехнологии,
0025 Ереван.
Индекс Хирша: Scopus - 23;
Scopus Author ID: 23974981000.
Ю. В. Литти
Россия
Литти Юрий Владимирович, кандидат биологических наук, заведующий лабораторией микробиологии антропогенных мест обитания,
119071 Москва, Ленинский пр-т, 33.
Индекс Хирша: РИНЦ - 12; Scopus - 16; WoS - 12;
Researcher ID: C-4945-2014; Scopus Author ID: 55251689800.
Список литературы
1. Ren Y, Si B, Liu Z, Jiang W, Zhang Y. Promoting dark fermentation for biohydrogen production: Potential roles of iron-based additives. International Journal of Hydrogen Energy 2022;47:1499–515. https://doi.org/10.1016/j.ijhydene.2021.10.137.
2. Nazir H, Muthuswamy N, Louis C, Jose S, Prakash J, Buan MEM, et al. Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. International Journal of Hydrogen Energy 2020;45:28217–39. https://doi.org/10.1016/j.ijhydene.2020.07.256.
3. Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 2012;16:3024–33. https://doi.org/10.1016/j.rser.2012.02.028.
4. Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy 2015;40:11094–111. https://doi.org/10.1016/j.ijhydene.2014.12.035.
5. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy 2015;144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045.
6. Nazir H, Louis C, Jose S, Prakash J, Muthuswamy N, Buan MEM, et al. Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. International Journal of Hydrogen Energy 2020;45:13777–88. https://doi.org/10.1016/j.ijhydene.2020.03.092.
7. Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy 2008;33:4013–29. https://doi.org/10.1016/j.ijhydene.2008.05.047.
8. Baeyens J, Zhang H, Nie J, Appels L, Dewil R, Ansart R, et al. Reviewing the potential of bio-hydrogen production by fermentation. Renewable and Sustainable Energy Reviews 2020;131:110023. https://doi.org/10.1016/j.rser.2020.110023.
9. Levin DB, Chahine R. Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy 2010;35:4962–9. https://doi.org/10.1016/j.ijhydene.2009.08.067.
10. Keskin T, Abo-Hashesh M, Hallenbeck PC. Photofermentative hydrogen production from wastes. Bioresource Technology 2011;102:8557–68. https://doi.org/10.1016/j.biortech.2011.04.004.
11. Putatunda C, Behl M, Solanki P, Sharma S, Bhatia SK, Walia A, et al. Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. International Journal of Hydrogen Energy 2022. https://doi.org/10.1016/j.ijhydene.2022.10.042.
12. Kim D-H, Kim M-S. Hydrogenases for biological hydrogen production. Bioresource Technology 2011;102:8423–31. https://doi.org/10.1016/j.biortech.2011.02.113.
13. Liao Q, Chang J, Herrmann C, Xia A, editors. Bioreactors for Microbial Biomass and Energy Conversion. Singapore: Springer; 2018. https://doi.org/10.1007/978-981-10-7677-0.
14. Eroglu E, Melis A. Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technology 2011;102:8403–13. https://doi.org/10.1016/j.biortech.2011.03.026.
15. Akhlaghi N, Najafpour-Darzi G. A comprehensive review on biological hydrogen production. International Journal of Hydrogen Energy 2020;45:22492–512. https://doi.org/10.1016/j.ijhydene.2020.06.182.
16. Mishra P, Krishnan S, Rana S, Singh L, Sakinah M, Ab Wahid Z. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Reviews 2019;24:27–37. https://doi.org/10.1016/j.esr.2019.01.001.
17. Das SR, Basak N. Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 2021;44:1–25. https://doi.org/10.1007/s00449-020-02422-5.
18. Seefeldt LC, Hoffman BM, Dean DR. Mechanism of Mo-Dependent Nitrogenase. Annual Review of Biochemistry 2009;78:701–22. https://doi.org/10.1146/annurev.biochem.78.070907.103812.
19. Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP. Site-Directed Mutagenesis of the Anabaena sp. Strain PCC 7120 Nitrogenase Active Site To Increase Photobiological Hydrogen Production. Applied and Environmental Microbiology 2010;76:6741–50. https://doi.org/10.1128/AEM.01056-10.
20. Barahona E, Jiménez-Vicente E, Rubio LM. Hydrogen overproducing nitrogenases obtained by random mutagenesis and high-throughput screening. Sci Rep 2016;6:38291. https://doi.org/10.1038/srep38291.
21. Argun H, Kargi F. Bio-hydrogen production by different operational modes of dark and photofermentation: An overview. International Journal of Hydrogen Energy 2011;36:7443–59. https://doi.org/10.1016/j.ijhydene.2011.03.116.
22. Kars G, Gündüz U. Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. International Journal of Hydrogen Energy 2010;35:6646–56. https://doi.org/10.1016/j.ijhydene.2010.04.037.
23. Hallenbeck PC, editor. Microbial Technologies in Advanced Biofuels Production. Boston, MA: Springer US; 2012. https://doi.org/10.1007/978-1-4614-1208-3.
24. Ghimire A, Valentino S, Frunzo L, Pirozzi F, Lens PNL, Esposito G. Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Bioresource Technology 2016;217:157–64. https://doi.org/10.1016/j.biortech.2016.03.017.
25. Policastro G, Luongo V, Fabbricino M. Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source. Journal of Environmental Management 2020;271:111006. https://doi.org/10.1016/j.jenvman.2020.111006.
26. Hitam CNC, Jalil AA. A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conv Bioref 2020. https://doi.org/10.1007/s13399-020-01140-y.
27. Ghosh S, Dairkee UK, Chowdhury R, Bhattacharya P. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – A review. Energy Conversion and Management 2017;141:299–314. https://doi.org/10.1016/j.enconman.2016.09.001.
28. Sinharoy A, Pakshirajan K. A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renewable Energy 2020;147:864–73. https://doi.org/10.1016/j.renene.2019.09.027.
29. Gunes B. A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes. Renewable and Sustainable Energy Reviews 2021;143:110950. https://doi.org/10.1016/j.rser.2021.110950.
30. Rittmann SK-MR, Lee HS, Lim JK, Kim TW, Lee J-H, Kang SG. One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnology Advances 2015;33:165–77. https://doi.org/10.1016/j.biotechadv.2014.11.004.
31. Jacob-Lopes E, Queiroz Zepka L, Queiroz MI, editors. Energy from Microalgae. Cham: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-69093-3.
32. Singh H, Tomar S, Qureshi KA, Jaremko M, Rai PK. Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production. Energies 2022;15:999. https://doi.org/10.3390/en15030999.
33. Sagir E, Alipour S. Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges. Renewable and Sustainable Energy Reviews 2021;141:110796. https://doi.org/10.1016/j.rser.2021.110796.
34. Melitos G, Voulkopoulos X, Zabaniotou A. Waste to Sustainable Biohydrogen Production Via Photo-Fermentation and Biophotolysis − A Systematic Review. Renew Energy Environ Sustain 2021;6:45. https://doi.org/10.1051/rees/2021047.
35. Li X, Wang Y-H, Zhang S-L, Chu J, Zhang M, Huang M-Z, et al. Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy — shaking and extra-light supplementation approach. International Journal of Hydrogen Energy 2009;34:9677–85. https://doi.org/10.1016/j.ijhydene.2009.10.020.
36. Rai PK, Singh SP. Integrated dark- and photofermentation: Recent advances and provisions for improvement. International Journal of Hydrogen Energy 2016;41:19957–71. https://doi.org/10.1016/j.ijhydene.2016.08.084.
37. Androga DD, Özgür E, Eroglu I, Gündüz U, Yücel M. Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. International Journal of Hydrogen Energy 2011;36:15583–94. https://doi.org/10.1016/j.ijhydene.2011.09.043.
38. Al-Mohammedawi HH, Znad H. Impact of metal ions and EDTA on photofermentative hydrogen production by Rhodobacter sphaeroides using a mixture of pre-treated brewery and restaurant effluents. Biomass and Bioenergy 2020;134:105482. https://doi.org/10.1016/j.biombioe.2020.105482.
39. Zhang H, Li Y, Chen L, Zhang Q. Effect of zinc ion on photo-fermentative hydrogen production performance, kinetics and electronic distribution in biohydrogen production by HAU-M1. Bioresource Technology 2021;324:124680. https://doi.org/10.1016/j.biortech.2021.124680.
40. Yang H, Ma H, Shi B, Li L, Yan W. Experimental study of the effects of heavy metal ions on the hydrogen production performance of Rhodobacter sphaeroides HY01. International Journal of Hydrogen Energy 2016;41:10631–8. https://doi.org/10.1016/j.ijhydene.2016.04.199.
41. Zhang Q, Zhu S, Zhang Z, Zhang H, Xia C. Enhancement strategies for photo-fermentative biohydrogen production: A review. Bioresource Technology 2021;340:125601. https://doi.org/10.1016/j.biortech.2021.125601.
42. Badiei M, Asim N, Jahim JM, Sopian K. Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia 2014;9:170–4. https://doi.org/10.1016/j.apcbee.2014.01.030.
43. Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renewable and Sustainable Energy Reviews 2020;117:109484. https://doi.org/10.1016/j.rser.2019.109484.
44. Ismail KSK, Najafpour G, Younesi H, Mohamed AR, Kamaruddin AH. Biological hydrogen production from CO: Bioreactor performance. Biochemical Engineering Journal 2008;39:468–77. https://doi.org/10.1016/j.bej.2007.11.003.
45. Lu C, Jiang D, Jing Y, Zhang Z, Liang X, Yue J, et al. Enhancing photo-fermentation biohydrogen production from corn stalk by iron ion. Bioresource Technology 2022;345:126457. https://doi.org/10.1016/j.biortech.2021.126457.
46. Budiman PM, Wu TY. Ultrasonication pretreatment of combined effluents from palm oil, pulp and paper mills for improving photofermentative biohydrogen production. Energy Conversion and Management 2016;119:142–50. https://doi.org/10.1016/j.enconman.2016.03.060.
47. Jiang D, Ge X, Zhang T, Chen Z, Zhang Z, He C, et al. Effect of alkaline pretreatment on photofermentative hydrogen production from giant reed: Comparison of NaOH and Ca(OH)2. Bioresource Technology 2020;304:123001. https://doi.org/10.1016/j.biortech.2020.123001.
48. Budiman PM, Wu TY. Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Conversion and Management 2018;165:509–27. https://doi.org/10.1016/j.enconman.2018.01.058.
49. Mohan SV, Srikanth S, Dinakar P, Sarma PN. Photo-biological hydrogen production by the adopted mixed culture: Data enveloping analysis. International Journal of Hydrogen Energy 2008;33:559–69. https://doi.org/10.1016/j.ijhydene.2007.10.033.
50. Li X, Shi H, Wang Y, Zhang S, Chu J, Zhang M, et al. Effects of vitamins (nicotinic acid, vitamin B1 and biotin) on phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5. International Journal of Hydrogen Energy 2011;36:9620–5. https://doi.org/10.1016/j.ijhydene.2011.04.219.
51. Ren H-Y, Liu B-F, Ding J, Nan J, Xie G-J, Zhao L, et al. Enhanced photo-hydrogen production of Rhodopseudomonas faecalis RLD-53 by EDTA addition. International Journal of Hydrogen Energy 2012;37:8277–81. https://doi.org/10.1016/j.ijhydene.2012.02.071.
52. Bolatkhan K, Kossalbayev BD, Zayadan BK, Tomo T, Veziroglu TN, Allakhverdiev SI. Hydrogen production from phototrophic microorganisms: Reality and perspectives. International Journal of Hydrogen Energy 2019;44:5799–811. https://doi.org/10.1016/j.ijhydene.2019.01.092.
53. Nagarajan D, Lee D-J, Kondo A, Chang J-S. Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation. Bioresource Technology 2017;227:373–87. https://doi.org/10.1016/j.biortech.2016.12.104.
54. Laikova AA, Kovalev AA, Kovalev DA, Zhuravleva EA, Shekhurdina SV, Loiko NG, et al. Feasibility of successive hydrogen and methane production in a single-reactor configuration of batch anaerobic digestion through bioaugmentation and stimulation of hydrogenase activity and direct interspecies electron transfer. International Journal of Hydrogen Energy 2023;48:12646–60. https://doi.org/10.1016/j.ijhydene.2022.12.231.
55. Kossalbayev BD, Tomo T, Zayadan BK, Sadvakasova AK, Bolatkhan K, Alwasel S, et al. Determination of the potential of cyanobacterial strains for hydrogen production. International Journal of Hydrogen Energy 2020;45:2627–39. https://doi.org/10.1016/j.ijhydene.2019.11.164.
56. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and Hydrogen Metabolism of Cyanobacteria. Microbiology and Molecular Biology Reviews 2002;66:1–20. https://doi.org/10.1128/MMBR.66.1.1-20.2002.
57. Kuppam C, Pandit S, Kadier A, Dasagrandhi C, Velpuri J. Biohydrogen Production: Integrated Approaches to Improve the Process Efficiency. In: Kalia VC, Kumar P, editors. Microbial Applications Vol.1: Bioremediation and Bioenergy, Cham: Springer International Publishing; 2017, p. 189–210. https://doi.org/10.1007/978-3-319-52666-9_9.
58. Azwar MY, Hussain MA, Abdul-Wahab AK. Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renewable and Sustainable Energy Reviews 2014;31:158–73. https://doi.org/10.1016/j.rser.2013.11.022.
59. Zannoni D, De Philippis R, editors. Microbial BioEnergy: Hydrogen Production. vol. 38. Dordrecht: Springer Netherlands; 2014. https://doi.org/10.1007/978-94-017-8554-9.
60. Hallenbeck PC, Abo-Hashesh M, Ghosh D. Strategies for improving biological hydrogen production. Bioresource Technology 2012;110:1–9. https://doi.org/10.1016/j.biortech.2012.01.103.
61. Mahidhara G, Burrow H, Sasikala Ch, Ramana ChV. Biological hydrogen production: molecular and electrolytic perspectives. World J Microbiol Biotechnol 2019;35:116. https://doi.org/10.1007/s11274-019-2692-z.
62. Kamshybayeva GK, Kossalbayev BD, Sadvakasova AK, Kakimova AB, Bauenova MO, Zayadan BK, et al. Genetic engineering contribution to developing cyanobacteria-based hydrogen energy to reduce carbon emissions and establish a hydrogen economy. International Journal of Hydrogen Energy 2023. https://doi.org/10.1016/j.ijhydene.2022.12.342.
63. Bechara R, Azizi F, Boyadjian C. Process simulation and optimization for enhanced biophotolytic hydrogen production from green algae using the sulfur deprivation method. International Journal of Hydrogen Energy 2021;46:14096–108. https://doi.org/10.1016/j.ijhydene.2021.01.115.
64. Петрова ЕВ, Кукарских ГП, Кренделева ТЕ, Антал ТК. О механизмах и роли фотосинтетического образования водорода у зеленых микроводорослей. Микробиология 2020;89. https://doi.org/10.31857/S0026365620030179.
65. Srirangan K, Pyne ME, Perry Chou C. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresource Technology 2011;102:8589–604. https://doi.org/10.1016/j.biortech.2011.03.087.
66. Masukawa H, Mochimaru M, Sakurai H. Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 2002;58:618–24. https://doi.org/10.1007/s00253-002-0934-7.
67. Yoshino F, Ikeda H, Masukawa H, Sakurai H. High Photobiological Hydrogen Production Activity of a Nostoc sp. PCC 7422 Uptake Hydrogenase-Deficient Mutant with High Nitrogenase Activity. Mar Biotechnol 2007;9:101–12. https://doi.org/10.1007/s10126-006-6035-3.
68. Oey M, Sawyer AL, Ross IL, Hankamer B. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnology Journal 2016;14:1487–99. https://doi.org/10.1111/pbi.12516.
69. Özgür E, Mars AE, Peksel B, Louwerse A, Yücel M, Gündüz U, et al. Biohydrogen production from beet molasses by sequential dark and photofermentation. International Journal of Hydrogen Energy 2010;35:511–7. https://doi.org/10.1016/j.ijhydene.2009.10.094.
70. Javed MA, Zafar AM, Aly Hassan A, Zaidi AA, Farooq M, El Badawy A, et al. The role of oxygen regulation and algal growth parameters in hydrogen production via biophotolysis. Journal of Environmental Chemical Engineering 2022;10:107003. https://doi.org/10.1016/j.jece.2021.107003.
71. Skjånes K, Andersen U, Heidorn T, Borgvang SA. Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 2016;28:2205–23. https://doi.org/10.1007/s10811-016-0789-4.
72. Rosli SS, Amalina Kadir WN, Wong CY, Han FY, Lim JW, Lam MK, et al. Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renewable and Sustainable Energy Reviews 2020;134:110306. https://doi.org/10.1016/j.rser.2020.110306.
73. Wu S, Xu L, Huang R, Wang Q. Improved biohydrogen production with an expression of codonoptimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresource Technology 2011;102:2610–6. https://doi.org/10.1016/j.biortech.2010.09.123.
74. Tinpranee N, Incharoensakdi A, Phunpruch S. Screening cyanobacteria from marine coastal waters of Thailand for biohydrogen production. J Appl Phycol 2018;30:3471–81. https://doi.org/10.1007/s10811-018-1490-6.
75. Taikhao S, Phunpruch S. Effect of Metal Cofactors of Key Enzymes on Biohydrogen Production by Nitrogen Fixing Cyanobacterium Anabaena siamensis TISIR 8012. Energy Procedia 2017;138:360–5. https://doi.org/10.1016/j.egypro.2017.10.166.
76. Philipps G, Happe T, Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 2012;235:729–45. https://doi.org/10.1007/s00425-011-1537-2.
77. Volgusheva A, Kukarskikh G, Krendeleva T, Rubin A, Mamedov F. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv 2014;5:5633–7. https://doi.org/10.1039/C4RA12710B.
78. Kundu A, Sahu JN, Redzwan G, Hashim MA. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. International Journal of Hydrogen Energy 2013;38:1745–57. https://doi.org/10.1016/j.ijhydene.2012.11.031.
79. Kadier A, Kalil MS, Abdeshahian P, Chandrasekhar K, Mohamed A, Azman NF, et al. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renewable and Sustainable Energy Reviews 2016;61:501–25. https://doi.org/10.1016/j.rser.2016.04.017.
80. Park S-G, Rajesh PP, Sim Y-U, Jadhav DA, Noori MdT, Kim D-H, et al. Addressing scale-up challenges and enhancement in performance of hydrogenproducing microbial electrolysis cell through electrode modifications. Energy Reports 2022;8:2726–46. https://doi.org/10.1016/j.egyr.2022.01.198.
81. Bora A, Mohanrasu K, Angelin Swetha T, Ananthi V, Sindhu R, Chi NTL, et al. Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production. Fuel 2022;328:125269. https://doi.org/10.1016/j.fuel.2022.125269.
82. Escapa A, Mateos R, Martínez EJ, Blanes J. Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renewable and Sustainable Energy Reviews 2016;55:942–56. https://doi.org/10.1016/j.rser.2015.11.029.
83. Murugaiyan J, Narayanan A, Naina Mohamed S. An overview of microbial electrolysis cell configuration: Challenges and prospects on biohydrogen production. International Journal of Energy Research 2022;46:20811–27. https://doi.org/10.1002/er.8494.
84. Zhao N, Liang D, Meng S, Li X. Bibliometric and content analysis on emerging technologies of hydrogen production using microbial electrolysis cells. International Journal of Hydrogen Energy 2020;45:33310–24. https://doi.org/10.1016/j.ijhydene.2020.09.104.
85. Li F, Liu W, Sun Y, Ding W, Cheng S. Enhancing hydrogen production with Ni–P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells. International Journal of Hydrogen Energy 2017;42:3641–6. https://doi.org/10.1016/j.ijhydene.2016.10.163.
86. Kadier A, Kalil MS, Chandrasekhar K, Mohanakrishna G, Saratale GD, Saratale RG, et al. Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens. Bioelectrochemistry 2018;119:211–9. https://doi.org/10.1016/j.bioelechem.2017.09.014.
87. Cardeña R, Cercado B, Buitrón G. Microbial Electrolysis Cell for Biohydrogen Production. Biohydrogen, Elsevier; 2019, p. 159–85. https://doi.org/10.1016/B978-0-444-64203-5.00007-1.
88. Saravanan A, Karishma S, Kumar PS, Yaashikaa PR, Jeevanantham S, Gayathri B. Microbial electrolysis cells and microbial fuel cells for biohydrogen production: current advances and emerging challenges. Biomass Conv Bioref 2020. https://doi.org/10.1007/s13399-020-00973-x.
89. Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AA. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renewable Energy 2014;71:466–72. https://doi.org/10.1016/j.renene.2014.05.052.
90. Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang S, et al. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells. Bioresource Technology 2022;346:126588. https://doi.org/10.1016/j.biortech.2021.126588.
91. Fan Y, Xu S, Schaller R, Jiao J, Chaplen F, Liu H. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosensors and Bioelectronics 2011;26:1908–12. https://doi.org/10.1016/j.bios.2010.05.006.
92. Xu S, Liu H, Fan Y, Schaller R, Jiao J, Chaplen F. Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 2012;93:871–80. https://doi.org/10.1007/s00253-011-3643-2.
93. Liu X, Wu W, Gu Z. Poly (3,4- ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. Journal of Power Sources 2015;277:110–5. https://doi.org/10.1016/j.jpowsour.2014.11.129.
94. Yasri N, Roberts EPL, Gunasekaran S. The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports 2019;5:1116–36. https://doi.org/10.1016/j.egyr.2019.08.007.
95. Chong P, Erable B, Bergel A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. Bioresource Technology 2019;289:121641. https://doi.org/10.1016/j.biortech.2019.121641.
96. Zhen G, Lu X, Kumar G, Bakonyi P, Xu K, Zhao Y. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives. Progress in Energy and Combustion Science 2017;63:119–45. https://doi.org/10.1016/j.pecs.2017.07.003.
97. Lu L, Ren ZJ. Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresource Technology 2016;215:254–64. https://doi.org/10.1016/j.biortech.2016.03.034.
98. Rozenfeld S, Teller H, Schechter M, Farber R, Krichevski O, Schechter A, et al. Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 2018;123:201–10. https://doi.org/10.1016/j.bioelechem.2018.05.007.
99. Prakash S, Ponnusamy K, Naina Mohamed S. An insight on Biocathode Microbial Desalination Cell: Current challenges and prospects. International Journal of Energy Research 2022;46:8546–59. https://doi.org/10.1002/er.7748.
100. Nealson KH, Rowe AR. Electromicrobiology: realities, grand challenges, goals and predictions. Microbial Biotechnology 2016;9:595–600. https://doi.org/10.1111/1751-7915.12400.
101. Hasany M, Mardanpour MM, Yaghmaei S. Biocatalysts in microbial electrolysis cells: A review. International Journal of Hydrogen Energy 2016;41:1477–93. https://doi.org/10.1016/j.ijhydene.2015.10.097.
102. Lu L, Xing D, Ren N. Bioreactor Performance and Quantitative Analysis of Methanogenic and Bacterial Community Dynamics in Microbial Electrolysis Cells during Large Temperature Fluctuations. Environ Sci Technol 2012;46:6874–81. https://doi.org/10.1021/es300860a.
103. Jadhav DA, Chendake AD, Schievano A, Pant D. Suppressing methanogens and enriching electrogens in bioelectrochemical systems. Bioresource Technology 2019;277:148–56. https://doi.org/10.1016/j.biortech.2018.12.098.
104. Cui W, Liu G, Zeng C, Lu Y, Luo H, Zhang R. Improved hydrogen production in the singlechamber microbial electrolysis cell with inhibition of methanogenesis under alkaline conditions. RSC Adv 2019;9:30207–15. https://doi.org/10.1039/C9RA05483A.
105. Hu H, Fan Y, Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Research 2008;42:4172–8. https://doi.org/10.1016/j.watres.2008.06.015.
106. Chae K-J, Choi M-J, Kim K-Y, Ajayi FF, Chang I-S, Kim IS. Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy 2010;35:13379–86. https://doi.org/10.1016/j.ijhydene.2009.11.114.
107. Almatouq A, Babatunde AO, Khajah M, Webster G, Alfodari M. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells. Journal of Water Process Engineering 2020;34:101140. https://doi.org/10.1016/j.jwpe.2020.101140.
108. Yu Z, Leng X, Zhao S, Ji J, Zhou T, Khan A, et al. A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresource Technology 2018;255:340–8. https://doi.org/10.1016/j.biortech.2018.02.003.
109. Saratale RG, Saratale GD, Pugazhendhi A, Zhen G, Kumar G, Kadier A, et al. Microbiome involved in microbial electrochemical systems (MESs): A review. Chemosphere 2017;177:176–88. https://doi.org/10.1016/j.chemosphere.2017.02.143.
110. Kadier A, Chaurasia AK, Sapuan SM, Ilyas RA, Ma PC, Alabbosh KFS, et al. Essential Factors for Performance Improvement and the Implementation of Microbial Electrolysis Cells (MECs). In: Kumar P, Kuppam C, editors. Bioelectrochemical Systems: Vol.1 Principles and Processes, Singapore: Springer; 2020, p. 139–68. https://doi.org/10.1007/978-981-15-6872-5_7.
111. Liu Y-P, Wang Y-H, Wang B-S, Chen Q-Y. Effect of anolyte pH and cathode Pt loading on electricity and hydrogen co-production performance of the bio-electrochemical system. International Journal of Hydrogen Energy 2014;39:14191–5. https://doi.org/10.1016/j.ijhydene.2014.02.127.
112. Rozenfeld S, Ouaknin Hirsch L, Gandu B, Farber R, Schechter A, Cahan R. Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel. Energies 2019;12:1968. https://doi.org/10.3390/en12101968.
113. Guo K, Prévoteau A, Rabaey K. A novel tubular microbial electrolysis cell for high rate hydrogen production. Journal of Power Sources 2017;356:484–90. https://doi.org/10.1016/j.jpowsour.2017.03.029.
114. Kim K-Y, Zikmund E, Logan BE. Impact of catholyte recirculation on different 3-dimensional stainless steel cathodes in microbial electrolysis cells. International Journal of Hydrogen Energy 2017;42:29708–15. https://doi.org/10.1016/j.ijhydene.2017.10.099.
115. Rousseau R, Etcheverry L, Roubaud E, Basséguy R, Délia M-L, Bergel A. Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint. Applied Energy 2020;257:113938. https://doi.org/10.1016/j.apenergy.2019.113938.
116. Gopalakrishnan B, Khanna N, Das D. Chapter 4 - Dark-Fermentative Biohydrogen Production. In: Pandey A, Mohan SV, Chang J-S, Hallenbeck PC, Larroche C, editors. Biohydrogen (Second Edition), Elsevier; 2019, p. 79–122. https://doi.org/10.1016/B978-0-444-64203-5.00004-6.
117. Jayachandran V, Basak N, De Philippis R, Adessi A. Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng 2022;45:1595–624. https://doi.org/10.1007/s00449-022-02738-4.
118. Hallenbeck PC, Ghosh D. Improvements in fermentative biological hydrogen production through metabolic engineering. Journal of Environmental Management 2012;95:S360–4. https://doi.org/10.1016/j.jenvman.2010.07.021.
119. Lee D-J, Show K-Y, Su A. Dark fermentation on biohydrogen production: Pure culture. Bioresource Technology 2011;102:8393–402. https://doi.org/10.1016/j.biortech.2011.03.041.
120. Khanna N, Das D. Biohydrogen production by dark fermentation. WIREs Energy and Environment 2013;2:401–21. https://doi.org/10.1002/wene.15.
121. Kumar G, Cho S-K, Sivagurunathan P, Anburajan P, Mahapatra DM, Park J-H, et al. Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. International Journal of Hydrogen Energy 2018;43:19885–901. https://doi.org/10.1016/j.ijhydene.2018.09.040.
122. Hung C-H, Chang Y-T, Chang Y-J. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems – A review. Bioresource Technology 2011;102:8437–44. https://doi.org/10.1016/j.biortech.2011.02.084.
123. Ntaikou I, Antonopoulou G, Lyberatos G. Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review. Waste Biomass Valor 2010;1:21–39. https://doi.org/10.1007/s12649-009-9001-2.
124. d’Ippolito G, Dipasquale L, Vella FM, Romano I, Gambacorta A, Cutignano A, et al. Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. International Journal of Hydrogen Energy 2010;35:2290–5. https://doi.org/10.1016/j.ijhydene.2009.12.044.
125. Zeidan AA, van Niel EWJ. A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. International Journal of Hydrogen Energy 2010;35:1128–37. https://doi.org/10.1016/j.ijhydene.2009.11.082.
126. Ciranna A, Santala V, Karp M. Biohydrogen production in alkalithermophilic conditions: Thermobrachium celere as a case study. Bioresource Technology 2011;102:8714–22. https://doi.org/10.1016/j.biortech.2011.01.028.
127. Sillero L, Sganzerla WG, ForsterCarneiro T, Solera R, Perez M. A bibliometric analysis of the hydrogen production from dark fermentation. International Journal of Hydrogen Energy 2022;47:27397–420. https://doi.org/10.1016/j.ijhydene.2022.06.083.
128. Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F, Toledo-Alarcón J, Paillet F, Escudie R, et al. Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Biotechnol 2015;14:761–85. https://doi.org/10.1007/s11157-015-9383-5.
129. Rosales-Colunga LM, Razo-Flores E, De León Rodríguez A. Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: Impact on hydrogen production. Bioresource Technology 2012;111:180–4. https://doi.org/10.1016/j.biortech.2012.01.175.
130. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, et al. Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews 2018;91:665–94. https://doi.org/10.1016/j.rser.2018.04.043.
131. Jarunglumlert T, Prommuak C, Putmai N, Pavasant P. Scaling-up bio-hydrogen production from food waste: Feasibilities and challenges. International Journal of Hydrogen Energy 2018;43:634–48. https://doi.org/10.1016/j.ijhydene.2017.10.013.
132. Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P. Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy 2010;35:10660–73. https://doi.org/10.1016/j.ijhydene.2010.03.008.
133. Bundhoo MAZ, Mohee R. Inhibition of dark fermentative bio-hydrogen production: A review. International Journal of Hydrogen Energy 2016;41:6713–33. https://doi.org/10.1016/j.ijhydene.2016.03.057.
134. García-Depraect O, Castro-Muñoz R, Muñoz R, Rene ER, León-Becerril E, Valdez-Vazquez I, et al. A review on the factors influencing biohydrogen production from lactate: The key to unlocking enhanced dark fermentative processes. Bioresource Technology 2021;324:124595. https://doi.org/10.1016/j.biortech.2020.124595.
135. Castelló E, Nunes Ferraz-Junior AD, Andreani C, Anzola-Rojas M del P, Borzacconi L, Buitrón G, et al. Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions. Renewable and Sustainable Energy Reviews 2020;119:109602. https://doi.org/10.1016/j.rser.2019.109602.
136. Bundhoo MAZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. Journal of Environmental Management 2015;157:20–48. https://doi.org/10.1016/j.jenvman.2015.04.006.
137. Rafieenia R, Lavagnolo MC, Pivato A. Pre-treatment technologies for dark fermentative hydrogen production: Current advances and future directions. Waste Management 2018;71:734–48. https://doi.org/10.1016/j.wasman.2017.05.024.
138. Nissilä ME, Lay C-H, Puhakka JA. Dark fermentative hydrogen production from lignocellulosic hydrolyzates – A review. Biomass and Bioenergy 2014;67:145–59. https://doi.org/10.1016/j.biombioe.2014.04.035.
139. Hagos K, Zong J, Li D, Liu C, Lu X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews 2017;76:1485–96. https://doi.org/10.1016/j.rser.2016.11.184.
140. Xiao N, Chen Y, Chen A, Feng L. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type. Sci Rep 2014;4:3992. https://doi.org/10.1038/srep03992.
141. Lopez-Hidalgo AM, Smoliński A, Sanchez A. A meta-analysis of research trends on hydrogen production via dark fermentation. International Journal of Hydrogen Energy 2022;47:13300–39. https://doi.org/10.1016/j.ijhydene.2022.02.106.
142. Zhao Y, Haddad M, Cimpoia R, Liu Z, Guiot SR. Performance of a Carboxydothermus hydrogenoformans-immobilizing membrane reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy 2013;38:2167–75. https://doi.org/10.1016/j.ijhydene.2012.11.038.
143. Sinharoy A, Baskaran D, Pakshirajan K. Sustainable biohydrogen production by dark fermentation using carbon monoxide as the sole carbon and energy source. International Journal of Hydrogen Energy 2019;44:13114–25. https://doi.org/10.1016/j.ijhydene.2019.03.130.
144. Liu C, Shi Y, Liu H, Ma M, Liu G, Zhang R, et al. Insight of co-fermentation of carbon monoxide with carbohydrate-rich wastewater for enhanced hydrogen production: Homoacetogenic inhibition and the role of pH. Journal of Cleaner Production 2020;267:122027. https://doi.org/10.1016/j.jclepro.2020.122027.
145. Kothari R, Kumar V, Pathak VV, Ahmad S, Aoyi O, Tyagi VV. A critical review on factors influencing fermentative hydrogen production. FBL 2017;22:1195–220. https://doi.org/10.2741/4542.
146. Kozłowski K, Lewicki A, Malińska K, Wei Q. Current State, Challenges and Perspectives of Biological Production of Hydrogen in Dark Fermentation Process in Poland. J Ecol Eng 2019;20:146–60. https://doi.org/10.12911/22998993/97270.
147. Yang G, Wang J. Various additives for improving dark fermentative hydrogen production: A review. Renewable and Sustainable Energy Reviews 2018;95:130–46. https://doi.org/10.1016/j.rser.2018.07.029.
148. Chen Y, Yin Y, Wang J. Recent advance in inhibition of dark fermentative hydrogen production. International Journal of Hydrogen Energy 2021;46:5053–73. https://doi.org/10.1016/j.ijhydene.2020.11.096.
149. Mohan SV, Mohanakrishna G, Srikanth S. Chapter 22 - Biohydrogen Production from Industrial Effluents. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E, editors. Biofuels, Amsterdam: Academic Press; 2011, p. 499–524. https://doi.org/10.1016/B978-0-12-385099-7.00023-1.
150. Zhang K, Cao G-L, Ren N-Q. Bioaugmentation with Thermoanaerobacterium thermosaccharolyticum W16 to enhance thermophilic hydrogen production using corn stover hydrolysate. International Journal of Hydrogen Energy 2019;44:5821–9. https://doi.org/10.1016/j.ijhydene.2019.01.045.
151. Sheng T, Meng Q, Wen X, Sun C, Yang L, Li L. Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste. Journal of Chemical Technology & Biotechnology 2021;96:1623–31. https://doi.org/10.1002/jctb.6682.
152. Luo G, Karakashev D, Xie L, Zhou Q, Angelidaki I. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: Homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnology and Bioengineering 2011;108:1816–27. https://doi.org/10.1002/bit.23122.
153. Litti YuV, Potekhina MA, Zhuravleva EA, Vishnyakova AV, Gruzdev DS, Kovalev AA, et al. Dark fermentative hydrogen production from simple sugars and various wastewaters by a newly isolated Thermoanaerobacterium thermosaccharolyticum SP-H2. International Journal of Hydrogen Energy 2022;47:24310–27. https://doi.org/10.1016/j.ijhydene.2022.05.235.
154. Kovalev AA, Kovalev DA, Zhuravleva EA, Katraeva IV, Panchenko V, Fiore U, et al. Twostage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode. Renewable Energy 2022;181:966–77. https://doi.org/10.1016/j.renene.2021.09.097.
155. Infantes D, González del Campo A, Villaseñor J, Fernández FJ. Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. International Journal of Hydrogen Energy 2011;36:15595–601. https://doi.org/10.1016/j.ijhydene.2011.09.061.
156. Barca C, Soric A, Ranava D, GiudiciOrticoni M-T, Ferrasse J-H. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review. Bioresource Technology 2015;185:386–98. https://doi.org/10.1016/j.biortech.2015.02.063.
157. Sharma P, Melkania U. Biocharenhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. International Journal of Hydrogen Energy 2017;42:18865–74. https://doi.org/10.1016/j.ijhydene.2017.06.171.
158. Pendyala B, Chaganti SR, Lalman JA, Shanmugam SR, Heath DD, Lau PCK. Pretreating mixed anaerobic communities from different sources: Correlating the hydrogen yield with hydrogenase activity and microbial diversity. International Journal of Hydrogen Energy 2012;37:12175–86. https://doi.org/10.1016/j.ijhydene.2012.05.105.
159. Luo L, Sriram S, Johnravindar D, Louis Philippe Martin T, Wong JWC, Pradhan N. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Bioresource Technology 2022;358:127404. https://doi.org/10.1016/j.biortech.2022.127404.
160. Salem AH, Brunstermann R, Mietzel T, Widmann R. Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. International Journal of Hydrogen Energy 2018;43:4856–65. https://doi.org/10.1016/j.ijhydene.2018.01.114.
161. Ghimire A, Sposito F, Frunzo L, Trably E, Escudié R, Pirozzi F, et al. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Waste Management 2016;50:55–64. https://doi.org/10.1016/j.wasman.2016.01.044.
162. Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, et al. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ Sci Pollut Res 2017;24:8790–804. https://doi.org/10.1007/s11356-017-8560-1.
163. Elreedy A, Fujii M, Koyama M, Nakasaki K, Tawfik A. Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zincbased nanoparticles. Water Research 2019;151:349–61. https://doi.org/10.1016/j.watres.2018.12.043.
164. Sunyoto NMS, Zhu M, Zhang Z, Zhang D. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresource Technology 2016;219:29–36. https://doi.org/10.1016/j.biortech.2016.07.089.
165. Rezaeitavabe F, Saadat S, Talebbeydokhti N, Sartaj M, Tabatabaei M. Enhancing biohydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar). Biomass and Bioenergy 2020;143:105846. https://doi.org/10.1016/j.biombioe.2020.105846.
166. Ventura J-RS, Rojas SM, Ventura RLG, Nayve FRP, Lantican NB. Potential for biohydrogen production from organic wastes with focus on sequential dark- and photofermentation: the Philippine setting. Biomass Conv Bioref 2023;13:8535–48. https://doi.org/10.1007/s13399-021-01324-0.
167. Bundhoo ZMA. Coupling dark fermentation with biochemical or bioelectrochemical systems for enhanced bio-energy production: A review. International Journal of Hydrogen Energy 2017;42:26667–86. https://doi.org/10.1016/j.ijhydene.2017.09.050.
168. Thu Ha Tran T, Khanh Thinh Nguyen P. Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell. Bioresource Technology 2022;357:127340. https://doi.org/10.1016/j.biortech.2022.127340.
169. Sivagurunathan P, Kuppam C, Mudhoo A, Saratale GD, Kadier A, Zhen G, et al. A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents. Critical Reviews in Biotechnology 2018;38:868–82. https://doi.org/10.1080/07388551.2017.1416578.
170. Sekoai PT, Yoro KO, Bodunrin MO, Ayeni AO, Daramola MO. Integrated system approach to dark fermentative biohydrogen production for enhanced yield, energy efficiency and substrate recovery. Rev Environ Sci Biotechnol 2018;17:501–29. https://doi.org/10.1007/s11157-018-9474-1.
171. Patel SKS, Das D, Kim SC, Cho B-K, Kalia VC, Lee J-K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renewable and Sustainable Energy Reviews 2021;150:111491. https://doi.org/10.1016/j.rser.2021.111491.
172. Mishra P, Thakur S, Singh L, Ab Wahid Z, Sakinah M. Enhanced hydrogen production from palm oil mill effluent using two stage sequential dark and photo fermentation. International Journal of Hydrogen Energy 2016;41:18431–40. https://doi.org/10.1016/j.ijhydene.2016.07.138.
173. Srivastava P, García-Quismondo E, Palma J, González-Fernández C. Coupling dark fermentation and microbial electrolysis cells for higher hydrogen yield: Technological competitiveness and challenges. International Journal of Hydrogen Energy 2023. https://doi.org/10.1016/j.ijhydene.2023.04.293.
174. Khongkliang P, Kongjan P, Utarapichat B, Reungsang A, O-Thong S. Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. International Journal of Hydrogen Energy 2017;42:27584–92. https://doi.org/10.1016/j.ijhydene.2017.06.145.
175. Nguyen PKT, Das G, Kim J, Yoon HH. Hydrogen production from macroalgae by simultaneous dark fermentation and microbial electrolysis cell. Bioresource Technology 2020;315:123795. https://doi.org/10.1016/j.biortech.2020.123795.
176. Phan TP, Ta QTH, Nguyen PKT. Maximizing performance of microbial electrolysis cell fed with dark fermentation effluent from water hyacinth. International Journal of Hydrogen Energy 2023;48:5447–62. https://doi.org/10.1016/j.ijhydene.2022.11.155.
177. Varanasi JL, Das D. Maximizing biohydrogen production from water hyacinth by coupling dark fermentation and electrohydrogenesis. International Journal of Hydrogen Energy 2020;45:5227–38. https://doi.org/10.1016/j.ijhydene.2019.06.030.
178. Marone A, Ayala-Campos OR, Trably E, Carmona-Martínez AA, Moscoviz R, Latrille E, et al. Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. International Journal of Hydrogen Energy 2017;42:1609–21. ttps://doi.org/10.1016/j.ijhydene.2016.09.166.
179. Li X-H, Liang D-W, Bai Y-X, Fan YT, Hou H-W. Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. International Journal of Hydrogen Energy 2014;39:8977–82. https://doi.org/10.1016/j.ijhydene.2014.03.065.
180. Cheng J, Ding L, Xia A, Lin R, Li Y, Zhou J, et al. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. Bioresource Technology 2015;179:13–9. https://doi.org/10.1016/j.biortech.2014.11.109.
181. Chookaew T, O-Thong S, Prasertsan P. Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. International Journal of Hydrogen Energy 2015;40:7433–8. https://doi.org/10.1016/j.ijhydene.2015.02.133.
182. Seifert K, Zagrodnik R, Stodolny M, Łaniecki M. Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation. Renewable Energy 2018;122:526–32. https://doi.org/10.1016/j.renene.2018.01.105.
183. Zhang T, Jiang D, Zhang H, Jing Y, Tahir N, Zhang Y, et al. Comparative study on biohydrogen production from corn stover: Photofermentation, dark-fermentation and dark-photo cofermentation. International Journal of Hydrogen Energy 020;45:3807–14. https://doi.org/10.1016/j.ijhydene.2019.04.170.
184. Dipasquale L, Adessi A, d’Ippolito G, Rossi F, Fontana A, De Philippis R. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields. Appl Microbiol Biotechnol 2015;99:1001–10. https://doi.org/10.1007/s00253-014-6231-4.
185. Niño-Navarro C, Chairez I, Christen P, Canul-Chan M, García-Peña EI. Enhanced hydrogen production by a sequential dark and photo fermentation process: Effects of initial feedstock composition, dilution and microbial population. Renewable Energy 2020;147:924–36. https://doi.org/10.1016/j.renene.2019.09.024.
Рецензия
Для цитирования:
Иваненко А.А., Лайкова А.А., Журавлева Е.А., Шехурдина С.В., Вишнякова А.В., Ковалев А.А., Ковалев Д.А., Трчунян К.А., Литти Ю.В. Биологическое получение водорода: от базовых принципов к последним достижениям в улучшении процесса. Альтернативная энергетика и экология (ISJAEE). 2023;(10):103-141. https://doi.org/10.15518/isjaee.2023.10.103-141
For citation:
Ivanenko A.A., Laikova A.A., Zhuravleva E.A., Shekhurdina S.V., Vishnyakova A.V., Kovalev A.A., Kovalev D.A., Trchounian K.A., Litti Yu.V. Biological production of hydrogen: from basic principles to the latest advances in process improvement. Alternative Energy and Ecology (ISJAEE). 2023;(10):103-141. (In Russ.) https://doi.org/10.15518/isjaee.2023.10.103-141