Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Assessment of the possibility of obtaining biohydrogen during decarbonization of municipal solid waste landfills

https://doi.org/10.15518/isjaee.2023.11.089-098

Abstract

   The article considers the actual problem of energy utilization of solid municipal waste, most of which is currently buried in landfills. The estimation of greenhouse gas emissions from these anthropogenic objects is given. It is noted that a promising direction of landfill biogas utilization is bio-hydrogen production. The authors present the results of laboratory studies on the production of biomethane from organic-containing waste with its further conversion into biohydrogen. On the example of a large landfill of solid municipal waste the possible geo-ecological effect due to the reduction of greenhouse gas emissions in the energy utilization of biogas is shown.

About the Authors

D. V. Molodtsov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Dmitry Vladislavovich Molodtsov, senior lecturer

Higher School of hydraulic and energy construction

195251; Polytechnicheskaya, 29, building B.; St. Petersburg

Education: St. Petersburg State Polytechnic University 2007; Research area: renewable energy, environmental management, waste disposal, environmental protection, flood protection; Publications: more than 60
h-index: 10.
WoS Researcher ID: GVU-5765-2022.

Tel.: +7-911-759-90-58



P. Yu. Mikheev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Pavel Yurevich Mikheev, Candidate of Technical Sciences, Associate Professor, senior lecturer

Higher School of hydraulic and energy construction

195251; Polytechnicheskaya, 29, building B.; St. Petersburg

Education: Peter the Great Saint-Petersburg Polytechnic University (Leningrad Polytechnic Institute) 2006; Research area: Power Engineering and
Environmental Engineering; Publications: more than 30; H-index: 5; Reasearcher ID: K-1289-2013; Scopus ID: 57202760535

Tel.: +7-911-759-90-58



V. I. Maslikov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Vladimir Ivanovich Maslikov, Doctor of Technical Sciences, Full Professor

Higher School of hydraulic and energy construction

195251; Polytechnicheskaya, 29, building B.; St. Petersburg

Education: Tajik Polytechnic Institute 1972; Research area: alternative energy, energy recycling of municipal solid waste, environmental safety; Publications: more than 150; h-index: 10; WoS Researcher ID: O-1118-2013

Tel.: +7-911-759-90-58



References

1. Kaza, S., Yao, L.C., Bhada-Tata, P. and Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. World Bank, Washington DC, 2018. doi: 10.1596/978-1-4648-1329-0.

2. Yaashikaa P.R. et al. A review on landfill system for municipal solid wastes: Insight into leachate, gas emissions, environmental and economic analysis. Chemosphere, 2022. Volume 309, Part 1, 136627. doi: 10.1016/j.chemosphere.2022.136627.

3. IPCC: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014, 1454 p.

4. Zhang, C., Xu, T., Feng, H., Chen, S. Greenhouse Gas Emissions from Landfills : A Review and Bibliometric Analysis. Sustainability 2019, 11, 2282. doi: 10.3390/su11082282.

5. Gómez-Sanabria, A., Kiesewetter, G., Klimont, Z. et al. Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nat Commun 13, 106 (2022). doi: 10.1038/s41467-021-27624-7.

6. David Meng-Chuen Chen et al. The world's growing municipal solid waste: trends and impacts. Environ. Res. Lett., 2020, 15, 074021. doi: 10.1088/1748-9326/ab8659.

7. Outlook for biogas and biomethane: Prospects for organic growth, IEA, Paris, 2020. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth.

8. Ravindra Kumar, Anil Kumar, Amit Pal. Overview of hydrogen production from biogas reforming: Technological advancement. International Journal of Hydrogen Energy, 2022. Volume 47, Issue 82. doi: 10.1016/j.ijhydene.2022.08.059.

9. Swartbooi, A., Kapanji-Kakoma, K.K., Musyoka, N.M. From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons. Sustainability 2022, 14, 11050. doi: 10.3390/su141711050.

10. Cristina Antonini et al. Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis. Sustainable Energy Fuels, 2020, 4, 2967-2986. doi: 10.1039/D0SE00222D.

11. Pedro J. Megía et al. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 20, 16403–16415. doi: 10.1021/acs.energyfuels.1c02501.

12. Howarth, R.W., Jacobson, M.Z. How green is blue hydrogen? Energy Sci Eng., 2021, 9, 1676–1687. doi: 10.1002/ese3.956.

13. Lebrouhi B.E. et al. Global hydrogen development - A technological and geopolitical overview. International Journal of Hydrogen Energy, 2022. Volume 47, Issue 11, 7016-7048. doi: 10.1016/j.ijhydene.2021.12.076.

14. Working Paper | Hydrogen on the Horizon: National Hydrogen Strategies. World Energy Council, 2021. URL: https://www.worldenergy.org/publications/entry/working-paper-hydrogen-on-the-horizon-national-hydrogen-strategies.

15. Cheng, W., Lee, S. How Green Are the National Hydrogen Strategies? Sustainability, 2022, 14, 1930. doi: 10.3390/su14031930.

16. Rasporyazhenie Pravitel'stva RF ot 9 iyunya 2020 g. № 1523-r Ob Ehnergeticheskoi strategii RF na period do 2035 g.

17. Fernando Vidal-Barrero et al. Hydrogen production from landfill biogas: Profitability analysis of a real case study. Fuel, 2022. Volume 324, Part A, 124438. doi: 10.1016/j.fuel.2022.124438.

18. Sharma, M., Pramanik, A., Bhowmick, G.D., Tripathi, A., Ghangrekar, M.M., Pandey, C., Kim, B.-S. Premier. Progress and Prospects in Renewable Hydrogen Generation : A Review. Fermentation 2023, 9, 537. doi: 10.3390/fermentation9060537.

19. Hydrogen from landfill gas. H2-international Blog. URL: https://h2-international.com/2022/05/07/hydrogen-from-landfill-gas/.

20. El Mashad, H. & Zhang, R. Biogas Energy from Organic Wastes. In Holden, N. M., Wolfe, M. L., Ogejo, J. A., & Cummins, E. J. (Ed.), Introduction to Biosystems Engineering, 2020. doi: 10.21061/IntroBiosystemsEngineering/Biogas.

21. Anelia Milbrandt, Brian Bush, and Marc Melaina. Biogas and Hydrogen Systems Market Assessment. National Renewable Energy Laboratory (NREL). Technical Report NREL/TP-6A20-63596, March 2016, 40 p. https://www.nrel.gov/docs/fy16osti/63596.pdf.

22. El-Shafie, M., Kambara, S. and Hayakawa, Y. Hydrogen Production Technologies Overview. Journal of Power and Energy Engineering, 2019, 7, 107-154. doi: 10.4236/jpee.2019.71007.

23. Metody polucheniya vodoroda v promyshlennom masshtabe. Sravnitel'nyi analiz / Shafiev D.R., Trapeznikov A.N., Khokhonov A.A., Agarkov D.A., Bredikhin S.I., Chichirov A.A., Subcheva E.N. // Uspekhi v khimii i khimicheskoi tekhnologii. — 2020. — T. 34. № 12 (235). —S. 53–57.

24. Sovremennye podkhody k polucheniyu vodoroda iz uglevodorodnogo syr'ya / I.A. Makaryan, I.V. Sedov, A.V. Nikitin, V.S. Arutyunov // Nauchnyi zhurnal Rossiiskogo gazovogo obshchestva. — 2020. — № 1. — S. 50–68.

25. Franchi, G., Capocelli, M., De Falco, M., Piemonte, V., Barba, D. Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies. Membranes 2020, 10, 10. doi: 10.3390/membranes10010010.

26. Nuria Sánchez-Bastardo, Robert Schlögl, and Holger Ruland. Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy. Industrial & Engineering Chemistry Research, 2021, 60(32), 11855-11881. DOI: 10.1021/acs.iecr.1c01679.

27. Lúcia Bollini Braga et al. Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. Renewable and Sustainable Energy Reviews, 2013. Volume 28, pp. 166-173. doi: 10.1016/j.rser.2013.07.060.

28. Chusov A.N., Maslikov V.I., Molodtsov D.V. Issledovaniya sostava biogaza na poligone tverdykh bytovykh otkhodov. // Bezopasnost' v tekhnosfere. T. 2. № 6 (45) — M.: Izd-vo Forum, 2013. — S. 24–28.

29. Chusov, A.N., Maslikov, V.I., Molodtsov, D.V., Zhazhkov, V.V., Riabuokhin, O.A. Assessment of zonal distribution of methane on MSW landfills in northern regions for its usage in local power engineering. Magazine of Civil Engineering, 2015, 58 (6), pp. 44–55. doi: 10.5862/MCE.58.5.

30. Avtomatizirovannyi uchebno-nauchnyi laboratornyi kompleks "Bioreaktor" dlya issledovaniya protsessov biorazlozheniya tverdykh bytovykh otkhodov / M.P. Fedorov, A.V. Cheremisin, V.I. Maslikov // Regional'naya ehkologiya № 3-4, 2001. — S. 51–54.

31. Laboratornye issledovaniya razlozheniya otkhodov v bioreaktorakh dlya otsenki biogazovogo potentsiala i vybora meropriyatii po rekul'tivatsii poligonov TBO / A.N. Chusov, V.I. Maslikov, E.Yu. Negulyaeva, D.V. Molodtsov, A.V. Cheremisin // Nauchno-tekhnicheskie vedomosti SPBGPU № 2-2(147)/2012 — SPb.: Izd-vo Politekhn, un-ta, 2012. — S. 229–235.

32. Ehksperimental'nyi kompleks dlya proizvodstva vodoroda iz organosoderzhashchikh otkhodov dlya primeneniya v toplivnykh ehlementakh / M.P.Fedorov, V.I. Maslikov, A.N. Chusov, D.V. Molodtsov // Nauchno-tekhnicheskie vedomosti SPBGPU № 4 (135)/2011 — SPb.: Izd-vo Politekhn, un-ta, 2011. — S. 35–41.

33. Zubkova M.Yu., Maslikov V.I., Molodtsov D.V. and Chusov A.N. Experimental research of hydrogenous fuel production from biogas for usage in fuel cells of autonomous power supply systems. Advanced Materials Research, 2014, 941-944, pp. 2107-2111. http://www.scientific.net/AMR.941-944.2107.

34. Tekhnologiya ispol'zovaniya v toplivnykh ehlementakh vodorodosoderzhashchei smesi na osnove biogazov dlya ehnergoobespecheniya avtonomnykh potrebitelei / A.N. Chusov, M.Yu. Zubkova, V.V. Korablev, V.I. Maslikov, D.V. Molodtsov // Nauchno-tekhnicheskie vedomosti SPBGPU № 4-1(183)/2013 — SPb.: Izd-vo Politekhn, un-ta, 2013. — S. 78–86.

35. Fedorov, M., Maslikov, V., Korablev, V., Politaeva, N., Chusov, A., Molodtsov, D. Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells. Energies 2022, 15, 8019. doi: 10.3390/en15218019.


Review

For citations:


Molodtsov D.V., Mikheev P.Yu., Maslikov V.I. Assessment of the possibility of obtaining biohydrogen during decarbonization of municipal solid waste landfills. Alternative Energy and Ecology (ISJAEE). 2023;(11):89-98. (In Russ.) https://doi.org/10.15518/isjaee.2023.11.089-098

Views: 122


ISSN 1608-8298 (Print)