

Production of biogas from organic waste at landfills by anaerobic digestion and its further conversion into biohydrogen
https://doi.org/10.15518/isjaee.2023.11.099-113
Abstract
Due to the increased demand for energy resources and the continuous increase in population, the use of RES from biomass and waste is becoming increasingly popular. The work analyzed existing approaches to solving global environmental and social problems through the use of landfill gas generated at municipal solid waste (MSW) landfills, as well as further reforming of biogas into biohydrogen. Waste monitoring was also carried out on the territory of LR and St. Petersburg. It was found that more than 12 million m3 of MSW of hazard classes 1-5 are formed annually in the region. It has been shown that the majority of waste is biodegradable organic matter (about 20%). To increase the biogas potential of MSW landfills during degassing and create additional economic benefits, a system for blowing and irrigation of landfill masses with the addition of a substrate from residual biomass of Chlorella microalgae was proposed. It is proposed to improve the scheme for sorting and using organic waste through selective collection and separation from the total mass of waste at the site of generation. A waste flow diagram has been developed taking into account the material balance of MSW in LR and St. Petersburg. Using this scheme will avoid contamination of other recycled MSW components. In addition, the work proposes a scheme for the further use of biomethane obtained at MSW landfills. Using reforming, it is proposed to purify the resulting gas to biohydrogen. The production of biohydrogen from biogas is cost-effective and can become an alternative to petroleum products. This technology could become a key element in the production of environmentally friendly fuels and the reduction of harmful emissions into the atmosphere.
Keywords
About the Authors
V. V. ZhazhkovRussian Federation
Vyacheslav Vladimirovich Zhazhkov, senior lecturer
Higher School of Hydraulic and Energy Construction
195251; Polytechnicheskaya, 29, building B.; St. Petersburg
Education: Federal State Autonomous Educational Institution of Higher Education "Peter the Great St. Petersburg Polytechnic University" (2017).
Research interests: development of methods for managing bioenergy resources of municipal solid waste landfills, research of biogas as an energy resource; Publications: 20 scientific articles, 9 published in peer-reviewed scientific publications recommended by the Higher Attestation Commission and included in the SCOPUS database, 1 invention
N. A. Politaeva
Russian Federation
Natalia Anatol’evna Politaeva, professor, Doctor of Technical Sciences
Higher School of Hydraulic and Energy Construction
195251; Polytechnicheskaya, 29, building B.; St. Petersburg
Education: State Educational Institution of Higher Professional Education "Saratov State Technical University" (1994); Research interests: Innovative
sorption materials for wastewater treatment. Use and recycling of waste according to the principle of circular economy. Production of biodiesel from biomass. Intensification of phytoremediation technologies for wastewater treatment. Development of technological modes of cultivation of producing microorganisms (cultivation of microalgae) to obtain biomass, its components, metabolic products. Creation of effective compositions of biological products and development of methods of their application.
Thickening of biomass, separation of cell suspensions, drying, granulation, extraction, isolation, fractionation, purification, control and storage of final target products; Publications: more than 300 scientific papers published in peer-reviewed scientific publications recommended by the Higher Attestation Commission and included in the SCOPUS database (87 scientific articles), author of 10 patents, 8 monographs (3 monographs published abroad), and author of 8 textbooks
K. A. Velmozhina
Russian Federation
Ksenia Alekseevna Velmozhina, engineer
research Laboratory of "Industrial Ecology"
195251; Polytechnicheskaya, 29, building B.; St. Petersburg
Education: Federal State Autonomous Educational Institution of Higher Education "Peter the Great St. Petersburg Polytechnic University" (2023); Research interests: improving methods for producing biogas, obtaining biohydrogen; Publications: 17 scientific articles, 4 of which in SCOPUS peer-reviewed journals (Q1-Q2), 1 invention
P. S. Shinkevich
Russian Federation
Polina Sergeevna Shinkevich, engineer
research Laboratory of "Industrial Ecology"
195251; Polytechnicheskaya, 29, building B.; St. Petersburg
Education: Federal State Autonomous Educational Institution of Higher Education "Peter the Great St. Petersburg Polytechnic University" (2023); Research interests: research on ways to reduce the carbon footprint using microalgae, production of biohydrogen; Publications: 13 scientific articles, 5 of which in SCOPUS peer-reviewed journals, 1 invention
B. Kh. Norov
Uzbekistan
Begmat Xolmatovich Norov, Dean, associate professor, Candidate of Technical
Sciences
Faculty of “Mechanization of Irrigation Works”
st. Kori Niyazov 39; Tashkent
Education: National research University “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” (1997); Research interests: studying technical problems in carrying out agro-reclamation activities, developing effective ways to use existing agricultural and reclamation equipment; Publications: 11 scientific articles in international peer-reviewed journals
References
1. Mignogna, Debora & Ceci, Paolo & Cafaro, Claudia & Corazzi, Giulia & Avino, Pasquale. (2023). Production of Biogas and Biomethane as Renewable Energy Sources: A Review. Applied Sciences. 13. 10219. 10.3390/app131810219.
2. Kang, M.; Zhao, W.; Jia, L.; Liu, Y. Balancing carbon emission reductions and social economic development for sustainable development: Experience from 24 countries. Chin. Geogr. Sci. 2020, 30, 379–396.
3. Martins, F.; Felgueiras, C.; Smitková, M. Fossil fuel energy consumption in European countries. Energy Procedia 2018, 153, 107–111
4. Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197.
5. Kularathne, I.W.; Gunathilake, C.A.; Rathneweera, A.C.; Kalpage, C.S.; Rajapakse, S. The effect of use of biofuels on environmental pollution — A review. Int. J. Renew. Energy Res. 2019, 9, 1355–1367.
6. Achinas S, Achinas V, Euverink G (2017) A technological overview of biogas production from biowaste. Engineering 3(3): 299-307.
7. Nekrošius, A. Sustainability and Impact on Environmental Pollution of Using Perennial Grasses for Biogas Production. Ph.D. Dissertation. Stulginskis University, Agriculture at the Faculty of Engineering, Institute of Energy and Biotechnology Engineering Kaunas District, Akademija, Lithuania, 2014; pp. 1–23.
8. Picardo, A.; Soltero, V.M.; Peralta, M.E.; Chacartegui, R. District heating based on biogas from wastewater treatment plant. Energy 2019, 180, 649–664. doi: 10.1016/j.energy.2019.05.123.
9. Bužinskienė, Rita & Miceikienė, Astrida & Venslauskas, Kestutis & Navickas, Kęstutis. (2023). Assessment of Energy-Economy and Environmental Performance of Perennial Crops in Terms of Biogas Production. Agronomy. 13. 24. doi: 10.3390/agronomy13051291.
10. Uzodinma E, Ofoefule A (2009) Biogas production from blends of field grass (Panicum maximum) with some animal wastes. Int. J Phys Sci 4(2): 91-95.
11. Holliger, C.; Laclos, H.F.; Hack, G. Methane Production of Full-Scale Anaerobic Digestion Plants Calculated from Substrate’s Biomethane Potentials Compares Well with the One Measured On-Site. Front. Energy Res. 2017, 5, 12.
12. Abu-Dahrieh JK, Orozco A, Ahmad M, Rooney D (2011) The Potential for Biogas Production from Grass, Proceedings of the Jordan International Energy Conference, Amman.
13. Pawlita-Posmyk, Monika & Wzorek, Małgorzata. (2017). Assessment of application of selected waste for production of biogas. E3S Web of Conferences. 19.02017. doi: 10.1051/e3sconf/20171902017.
14. Yevstafiieva, Y.; Levytska, V.; Terenov, D. Biogas Production as a Component of Green Energy Generation. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer: Cham, Switzerland, 2018; pp. 755–764.
15. Borowski, Piotr & Barwicki, Jan. (2022). Efficiency of Utilization of Wastes for Green Energy Production and Reduction of Pollution in Rural Areas. Energies. 16. 13. doi: 10.3390/en16010013.
16. Simbirskikh, E. (2020). Application of biogas in Russia. IOP Conference Series: Earth and Environmental Science. 548. 022074. doi: 10.1088/1755-1315/548/2/022074.
17. Debebe, Yalemtsehay & Gonfa, Girma. (2019). Biogas Energy Production Potential of Grass under Anaerobic Digestion: Review. Agricultural Research & Technology: Open Access Journal. 21. doi: 10.19080/ARTOAJ.2019.21.556160.
18. Otsenka sostoyaniya poligonov zakhoroneniya TBO po izmeneniyu organicheskoi sostavlyayushchei / Yu.V. Zavizion, N.N. Slyusar', I.S. Glushankova, Yu.M. Zagorskaya, V.N. Korotaev // Ehkologiya i promyshlennost' Rossii. – 2015. – № 7.– S. 26–31.
19. Slyusar', N.N. Printsipy upravleniya poligonom zakhoroneniya tverdykh kommunal'nykh otkhodov na raznykh ehtapakh zhiznennogo tsikla / N.N. Slyusar', A.YU. Pukhnyuk // Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universite-ta. Prikladnaya ehkologiya. Urbanistika. – 2016. – Tom 22, № 2.– S. 148–164.
20. Langergraber, G.; Castellar, J.A.C.; Pucher, B.; Baganz, G.F.M.; Milosevic, D.; Andreucci, M.-B.; Kearney, K.; Pineda-Martos, R.; Atanasova, N. A Framework for Addressing Circularity Challenges in Cities with Nature-Based Solutions. Water 2021, 13, 2355. doi: 10.3390/w13172355.
21. Service of the Republic of Poland. Ministry of Development and Technology. Available online: https://www.gov.pl/web/rozwojtechnologia/gospodarka-o-obiegu-zamknietym (accessed on 2 March 2022).
22. Pearse, L.F., Hettiarachi, J.P.A. and Da Costa, D. (2020), “A new biochemical methane potential assay for landfilled waste using the organic fraction of municipal solid waste”, Bioresource Technology Reports, Vol. 12, pp. 1-9.
23. EPA (2021a), Landfill Gas Energy Project Development Handbook, US Environment Protection Agency - Landfill Methane Outreach Program (LMOP), Washington.
24. Romero, H.I., Vega, C.A., Zuma, J.D., Pesantez, F.F., Camacho, A.G. and Redrovan, F.F. (2020), “Comparison of the methane potential obtained by an-aerobic codigestion of urban solid waste and lignocellulosic biomass”, Energy Report, Vol. 6, pp. 776-780.
25. Pant, A. and Rai, J.P.N. (2021), “Application of Biochar on methane production through organic solid waste and ammonia inhibition”, Environmental Challenges, Vol. 5, pp. 1-8, 100262.
26. Sohoo, I., Ritzkowski, M., Heerenklage, J. and Kutcha, K. (2021), “Biochemical methane potential assessment of municipal solid waste generated in Asian cities: a case study of Karachi, Pakistan”, Renewable and Sustainable Energy Reviews, Vol. 135, pp. 1-17.
27. Sanchez, A. (2022), “Decentralized composting of food waste: a perpective on scientific knowledge”, Frontiers in Chemical Engineering, Vol. 4, pp. 1-8.
28. EPA (2021c), The Landfill Gas Energy Cost Model: LFGcost-Web User’s Manual Version 3.5, U.S. Environmental Protection Agency - Landfill Methane Outreach Program (LMOP), WA DC.
29. Huang, W. and Fooladi, H. (2021), “Economic and environmental estimated assessment of power production from municipal solid waste using anaerobic digestion and andfill gas technologies”, Energy Reports, Vol. 7, pp. 4460-4469.
30. Moharir, R.V., Gautam, P. and Kumar, S. (2019), “Chapter four: waste treatment process/technologies for energy recovery”, Current Development in Biotechnology and Bioengineering: Waste Treatment Processes for Energy Generation, Science Direct, pp. 53-77.
31. Gupta, P., Kumar, A. and Sinhamahapatra, A. (2022), “Liquid fuel from plastic”, Encyclopedia of Material: Plastics and Polymers, Science Direct, pp. 904-916.
32. Nazarov V.I. Tekhnika i tekhnologiya sovmeshchennykh protsessov pererabotki tverdykh otkhodov. Uchebnoe posobie / V.I. Nazarov, D.A. Makarenkov, R. Sandu M. INFRA-M, 2020. – 176 s.
33. Baader V., Done E., Brennderfer M. Biogaz: teoriya i praktika = Biogas in Theorie und Praxis. — M.: Kolos, 1982. — 148 s.
34. Zuberi, M.J.S. and Ali, S.F. (2015), “Greenhouse effect reduction by recovering energy from waste landfills in Pakistan”, Renewable and Sustainable Energy Review, Vol. 44, pp. 117-131.
35. Sarptas, H. (2016), “Assessment of landfill gas (LFG) energy potential based on estimates of LFG models”, Fen ve Muhendislik Dergisi € , Vol. 54 No. 3, pp. 491-501.
36. Usman, Abdullahi. (2022). An estimation of bio-methane and energy project potentials of municipal solid waste using landfill gas emission and cost models. Frontiers in Engineering and Built Environment. 2. doi: 10.1108/FEBE-06-2022-0021.
37. Islam, M.N., Park, K.J. and Yoon, H.S. (2012), “Methane production potential of food waste and food waste mixture with swine manure in anaerobic digestion”, Journal of Biosystems Engineering, Vol. 37 No. 2, pp. 100-105.
38. Dzene, I., Barisa, A., Rosa, M. and Dobraja, M. (2016), “A conceptual methodology for waste-tobiomethane assessment in an urban environment”, Energy Procedia, Vol. 95, pp. 3-10.
39. Cvetković, Slobodan & Kaluđerović Radoičić, Tatjana & Kijevcanin, Mirjana & Grbovic Novakovic, Jasmina. (2021). Life Cycle Energy Assessment of biohydrogen production via biogas steam reforming: Case study of biogas plant on a farm in Serbia. International Journal of Hydrogen Energy. 46. doi: 10.1016/j.ijhydene.2021.01.181.
40. Fedorov, Mikhail & Maslikov, Vladimir & Korablev, Vadim & Politaeva, Natalia & Chusov, Aleksandr & Molodtsov, Dmitriy. (2022). Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells. Energies. 15. 8019. doi: 10.3390/en15218019.
41. Braga BL, Silveira LJ, da Silva ME, Tuna CE, Machin EB, Pedroso DT. Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis. Renew Sustain Energy Rev 2013;28:166e73.
42. Franchi, G.; Capocelli, M.; De Falco, M.; Piemonte, V.; Barba, D. Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies. Membranes 2020, 10, 10.
43. González, Juan & Álvez-Medina, Carmen & Nogales, Sergio. (2023). Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges. Energies. 16. 6343. doi: 10.3390/en16176343.
44. Edinaya kontseptsiya obrashcheniya s tverdymi kommunal'nymi otkhodami na territorii Sankt-Peterburga i Leningradskoi oblasti razrabotana i utverzhdena Gubernatorami Sankt Peterburga i Leningradskoi oblasti, protokol ot 21. 02. 2022 [Ehlektronnyi resurs], otkrytyi dostup: gov.spb.ru; https://spb-neo.ru/dokumentatsiya/edinaya-kontseptsiya-obrashcheniya-s-tko/ (data obrashcheniya dekabr' 2022 g.).
45. Nevskii ehkologicheskii operator (o klyuchevykh tselyakh sozdaniya v regionakh infrastruktury obrashcheniya s otkhodami) ot 15. 03. 2023 [Ehlektronnyi resurs] otkrytyi dostup: https://spb-neo.ru/ (data obrashcheniya dekabr' 2022 g.).
46. Biogas potential assessment of the composite mixture from duckweed biomass // Chusov, A., Maslikov, V., Badenko, V., Zhazhkov, V., Molodtsov, D., Pavlushkina, Y. Sustainability (Switzerland), 2022, 14(1), 351, Q2.
47. Determination of biogas potential of residual biomass of microalgae Chlorella sorokiniana // A. Chusov, V. Maslikov, V. Zhazhkov, Y. Pavlushkina // IOP Conference Series: Earth and Environmental Science, 2019. - Vol. 403.
48. Intensifikatsiya protsessov polucheniya biogaza pri ispol'zovanii dobavki iz mikrovodoroslei // V.V. Zhazhkov, N.A. Politaeva, A.N. Chusov, V.I Maslikov // Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Prikladnaya ehkologiya. Urbanistika. - 2020. - № 4(40), S. 41-53.
49. Vel'mozhina, K. A. Primenenie mikrovodoroslei Chlorella kessleri dlya intensifikatsii anaehrobnogo sbrazhivaniya pishchevykh otkhodov / K. A. Vel'mozhina, P. S. Shinkevich // Tekhnologii pererabotki otkhodov s polucheniem novoi produktsii : materialy IV Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, Kirov, 30 noyabrya 2022 goda. – Kirov: Vyatskii gosudarstvennyi universitet, 2022. – S. 183-184. – EDN: GQKYUA.
50. Patent № 2797838 C1 Rossiiskaya Federatsiya, MPK B01D 53/62, B01D 53/84. Sposob utilizatsii uglekislogo gaza s primeneniem mikrovodorosli roda Chlorella : № 2022119015 : zayavl. 12. 07. 2022 : opubl. 08. 06. 2023 / N. A. Politaeva, V. V. Zhazhkov, N. V. Zibarev [i dr.] ; zayavitel' Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya "Sankt-Peterburgskii politekhnicheskii universitet Petra Velikogo". – EDN: OMIVZY.
51. Shinkevich, P. S. Primenenie mikrovodoroslei v CCU tekhnologiyakh / P. S. Shinkevich, N. A. Politaeva // Ratsional'noe ispol'zovanie prirodnykh resursov i pererabotka tekhnogennogo syr'ya: fundamental'nye problemy nauki, materialovedenie, khimiya i biotekhnologiya : Sbornik dokladov Mezhdunarodnoi nauchnoi konferentsii, Alushta-Belgorod, 05–09 iyunya 2023 goda. – Belgorod: Belgorodskii gosudarstvennyi tekhnologicheskii universitet im. V.G. Shukhova, 2023. – S. 329-334. – EDN: DMXJSH.
52. Ustroistvo dlya kriogennogo izvlecheniya uglekislogo gaza iz potoka biogaza/Chechevichkin A.V., Chechevichkin V.N., Maslikov V.I., Chusov A.N., Politaeva N.A. Patent na poleznuyu model' 217503 U1, 04. 04. 2023. Zayavka № 2022132663 ot 13. 12 .2022.
Review
For citations:
Zhazhkov V.V., Politaeva N.A., Velmozhina K.A., Shinkevich P.S., Norov B.Kh. Production of biogas from organic waste at landfills by anaerobic digestion and its further conversion into biohydrogen. Alternative Energy and Ecology (ISJAEE). 2023;(11):99-113. (In Russ.) https://doi.org/10.15518/isjaee.2023.11.099-113